train.py 5.8 KB
Newer Older
Q
Qiao Longfei 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
D
dongdaxiang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dongdaxiang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28
import os
import sys
import time
import six
import numpy as np
import math
import argparse
import logging
import paddle.fluid as fluid
import paddle
import time
import reader as reader
from nets import MultiviewSimnet, SimpleEncoderFactory

29
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
D
dongdaxiang 已提交
30 31 32
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)

33

D
dongdaxiang 已提交
34 35
def parse_args():
    parser = argparse.ArgumentParser("multi-view simnet")
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    parser.add_argument("--train_file", type=str, help="Training file")
    parser.add_argument("--valid_file", type=str, help="Validation file")
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of epochs for training")
    parser.add_argument(
        "--model_output_dir",
        type=str,
        default='model_output',
        help="Model output folder")
    parser.add_argument(
        "--query_slots", type=int, default=1, help="Number of query slots")
    parser.add_argument(
        "--title_slots", type=int, default=1, help="Number of title slots")
    parser.add_argument(
        "--query_encoder",
        type=str,
        default="bow",
        help="Encoder module for slot encoding")
    parser.add_argument(
        "--title_encoder",
        type=str,
        default="bow",
        help="Encoder module for slot encoding")
    parser.add_argument(
        "--query_encode_dim",
        type=int,
        default=128,
        help="Dimension of query encoder output")
    parser.add_argument(
        "--title_encode_dim",
        type=int,
        default=128,
        help="Dimension of title encoder output")
    parser.add_argument(
        "--batch_size", type=int, default=128, help="Batch size for training")
    parser.add_argument(
        "--embedding_dim",
        type=int,
        default=128,
        help="Default Dimension of Embedding")
    parser.add_argument(
        "--sparse_feature_dim",
        type=int,
        default=1000001,
        help="Sparse feature hashing space"
        "for index processing")
    parser.add_argument(
        "--hidden_size", type=int, default=128, help="Hidden dim")
Z
zhengya01 已提交
84 85 86 87
    parser.add_argument(
        '--enable_ce',
        action='store_true',
        help='If set, run the task with continuous evaluation logs.')
D
dongdaxiang 已提交
88 89
    return parser.parse_args()

90

D
dongdaxiang 已提交
91
def start_train(args):
Z
zhengya01 已提交
92 93 94 95 96
    if args.enable_ce:
        SEED = 102
        fluid.default_startup_program().random_seed = SEED
        fluid.default_startup_program().random_seed = SEED

97
    dataset = reader.SyntheticDataset(args.sparse_feature_dim, args.query_slots,
D
dongdaxiang 已提交
98 99 100
                                      args.title_slots)
    train_reader = paddle.batch(
        paddle.reader.shuffle(
101
            dataset.train(), buf_size=args.batch_size * 100),
D
dongdaxiang 已提交
102 103 104
        batch_size=args.batch_size)
    place = fluid.CPUPlace()
    factory = SimpleEncoderFactory()
105 106 107 108 109 110 111 112 113
    query_encoders = [
        factory.create(args.query_encoder, args.query_encode_dim)
        for i in range(args.query_slots)
    ]
    title_encoders = [
        factory.create(args.title_encoder, args.title_encode_dim)
        for i in range(args.title_slots)
    ]
    m_simnet = MultiviewSimnet(args.sparse_feature_dim, args.embedding_dim,
D
dongdaxiang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126
                               args.hidden_size)
    m_simnet.set_query_encoder(query_encoders)
    m_simnet.set_title_encoder(title_encoders)
    all_slots, avg_cost, correct = m_simnet.train_net()
    optimizer = fluid.optimizer.Adam(learning_rate=1e-4)
    optimizer.minimize(avg_cost)
    startup_program = fluid.default_startup_program()
    loop_program = fluid.default_main_program()

    feeder = fluid.DataFeeder(feed_list=all_slots, place=place)
    exe = fluid.Executor(place)
    exe.run(startup_program)

Z
zhengya01 已提交
127 128
    total_time = 0
    ce_info = []
D
dongdaxiang 已提交
129
    for pass_id in range(args.epochs):
Z
zhengya01 已提交
130
        start_time = time.time()
D
dongdaxiang 已提交
131
        for batch_id, data in enumerate(train_reader()):
132 133 134
            loss_val, correct_val = exe.run(loop_program,
                                            feed=feeder.feed(data),
                                            fetch_list=[avg_cost, correct])
D
dongdaxiang 已提交
135
            logger.info("TRAIN --> pass: {} batch_id: {} avg_cost: {}, acc: {}"
136
                        .format(pass_id, batch_id, loss_val,
D
dongdaxiang 已提交
137
                                float(correct_val) / args.batch_size))
Z
zhengya01 已提交
138 139 140
            ce_info.append(loss_val[0])
        end_time = time.time()
        total_time += end_time - start_time
141
        fluid.io.save_inference_model(args.model_output_dir,
Q
Qiao Longfei 已提交
142
                                      [val.name for val in all_slots],
143 144
                                      [avg_cost, correct], exe)

Z
zhengya01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    # only for ce
    if args.enable_ce:
        threads_num, cpu_num = get_cards(args)
        epoch_idx = args.epochs 
        ce_loss = 0
        try:
            ce_loss = ce_info[-2]
        except:
            logger.error("ce info error")

        print("kpis\teach_pass_duration_cpu%s_thread%s\t%s" %
                (cpu_num, threads_num, total_time / epoch_idx))
        print("kpis\ttrain_loss_cpu%s_thread%s\t%s" %
                (cpu_num, threads_num, ce_loss))


def get_cards(args):
    threads_num = os.environ.get('NUM_THREADS', 1)
    cpu_num = os.environ.get('CPU_NUM', 1)
    return int(threads_num), int(cpu_num)

D
dongdaxiang 已提交
166 167 168 169 170

def main():
    args = parse_args()
    start_train(args)

171

D
dongdaxiang 已提交
172 173
if __name__ == "__main__":
    main()