train.py 4.8 KB
Newer Older
H
hetianjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

H
hetianjian 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
import numpy as np
import os
from functools import partial
import logging
import paddle
import paddle.fluid as fluid
import argparse
import network
import reader

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser("gnn")
    parser.add_argument(
        '--train_path', type=str, default='./data/diginetica/train.txt', help='dir of training data')
    parser.add_argument(
        '--config_path', type=str, default='./data/diginetica/config.txt', help='dir of config')
    parser.add_argument(
        '--model_path', type=str, default='./saved_model', help="path of model parameters")
    parser.add_argument(
        '--epoch_num', type=int, default=30, help='number of epochs to train for')
    parser.add_argument(
        '--batch_size', type=int, default=100, help='input batch size')
    parser.add_argument(
        '--hidden_size', type=int, default=100, help='hidden state size')
    parser.add_argument(
        '--l2', type=float, default=1e-5, help='l2 penalty')
    parser.add_argument(
        '--lr', type=float, default=0.001, help='learning rate')
    parser.add_argument(
        '--step', type=int, default=1, help='gnn propogation steps')
    parser.add_argument(
        '--lr_dc', type=float, default=0.1, help='learning rate decay rate')
    parser.add_argument(
        '--lr_dc_step', type=int, default=3, help='the number of steps after which the learning rate decay')
    parser.add_argument(
        '--use_cuda', type=int, default=0, help='whether to use gpu')
    parser.add_argument(
        '--use_parallel', type=int, default=1, help='whether to use parallel executor')
    return parser.parse_args()


def train():
    args = parse_args()
    batch_size = args.batch_size
    items_num = reader.read_config(args.config_path)
    loss, acc = network.network(batch_size, items_num, args.hidden_size,
                                args.step)

    data_reader = reader.Data(args.train_path, True)
    logger.info("load data complete")

    use_cuda = True if args.use_cuda else False
    use_parallel = True if args.use_parallel else False
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)
    step_per_epoch = data_reader.length // batch_size
    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.lr,
            decay_steps=step_per_epoch * args.lr_dc_step,
            decay_rate=args.lr_dc),
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=args.l2))
    optimizer.minimize(loss)

    exe.run(fluid.default_startup_program())

    all_vocab = fluid.global_scope().var("all_vocab").get_tensor()
    all_vocab.set(
        np.arange(1, items_num).astype("int64").reshape((-1, 1)), place)

    feed_list = [
        "items", "seq_index", "last_index", "adj_in", "adj_out", "mask", "label"
    ]
    feeder = fluid.DataFeeder(feed_list=feed_list, place=place)

    if use_parallel:
        train_exe = fluid.ParallelExecutor(
            use_cuda=use_cuda, loss_name=loss.name)
    else:
        train_exe = exe

    logger.info("begin train")

    loss_sum = 0.0
    acc_sum = 0.0
    global_step = 0
    PRINT_STEP = 500
    for i in range(args.epoch_num):
        epoch_sum = []
        for data in data_reader.reader(batch_size, batch_size * 20, True):
            res = train_exe.run(feed=feeder.feed(data),
                                fetch_list=[loss.name, acc.name])
            loss_sum += res[0]
            acc_sum += res[1]
            epoch_sum.append(res[0])
            global_step += 1
            if global_step % PRINT_STEP == 0:
                logger.info("global_step: %d, loss: %.4lf, train_acc: %.4lf" % (
                    global_step, loss_sum / PRINT_STEP, acc_sum / PRINT_STEP))
                loss_sum = 0.0
                acc_sum = 0.0
        logger.info("epoch loss: %.4lf" % (np.mean(epoch_sum)))
        save_dir = args.model_path + "/epoch_" + str(i)
        fetch_vars = [loss, acc]
        fluid.io.save_inference_model(save_dir, feed_list, fetch_vars, exe)
        logger.info("model saved in " + save_dir)


if __name__ == "__main__":
    train()