info.yaml 1.9 KB
Newer Older
Z
zhoujun 已提交
1 2 3
---
Model_Info:
   name: "PP-OCRv3"
文幕地方's avatar
文幕地方 已提交
4 5
   description: "PP-OCRv3文字检测识别系统"
   description_en: "PP-OCRv3 text detection and recognition system"
Z
zhoujun 已提交
6 7 8
   icon: "@后续UE统一设计之后,会存到bos上某个位置"
   from_repo: "PaddleOCR"
Task:
文幕地方's avatar
文幕地方 已提交
9
   - tag_en: "Computer Vision"
Z
zhoujun 已提交
10
     tag: "计算机视觉"
L
liuTINA0907 已提交
11 12 13 14 15 16 17 18 19 20
     sub_tag_en: "Text Detection"
     sub_tag: "文字检测"
   - tag_en: "Computer Vision"
     tag: "计算机视觉"
     sub_tag_en: "Character Recognition"
     sub_tag: "文字识别"
   - tag_en: "Computer Vision"
     tag: "计算机视觉"
     sub_tag_en: "Optical Character Recognition"
     sub_tag: "OCR"
Z
zhoujun 已提交
21
Example:
文幕地方's avatar
文幕地方 已提交
22
   - title: "【官方】十分钟完成 PP-OCRv3 识别全流程实战"
Z
zhoujun 已提交
23
     url: "https://aistudio.baidu.com/aistudio/projectdetail/3916206?channelType=0&channel=0"
文幕地方's avatar
文幕地方 已提交
24 25
     title_en: "[Official] Complete the whole process of PP-OCRv3 identification in ten minutes"
     url_en: "https://aistudio.baidu.com/aistudio/projectdetail/3916206?channelType=0&channel=0"
Z
zhoujun 已提交
26 27
   - title: "鸟枪换炮!基于PP-OCRv3的电表检测识别"
     url: "https://aistudio.baidu.com/aistudio/projectdetail/511591?channelType=0&channel=0"
文幕地方's avatar
文幕地方 已提交
28 29
     title_en: "Swap the shotgun! Detection and recognition electricity meters based on PP-OCRv3"
     url_en: "https://aistudio.baidu.com/aistudio/projectdetail/511591?channelType=0&channel=0"
Z
zhoujun 已提交
30 31
   - title: "基于PP-OCRv3实现PCB字符识别"
     url: "https://aistudio.baidu.com/aistudio/projectdetail/4008973?channelType=0&channel=0"
文幕地方's avatar
文幕地方 已提交
32 33
     title_en: "PCB character recognition based on PP-OCRv3"
     url_en: "https://aistudio.baidu.com/aistudio/projectdetail/4008973?channelType=0&channel=0"
Z
zhoujun 已提交
34 35 36 37 38 39 40 41
Datasets: "ICDAR 2015, ICDAR2019-LSVT,ICDAR2017-RCTW-17,Total-Text,ICDAR2019-ArT"
Pulisher: "Baidu"
License: "apache.2.0"
Paper:
   - title: "PP-OCRv3: More Attempts for the Improvement of Ultra Lightweight OCR System"
     url: "https://arxiv.org/abs/2206.03001"
IfTraining: 0
IfOnlineDemo: 1