train.py 6.1 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import argparse
import os
import random
import time

import paddle
import paddlenlp as ppnlp
23
from paddlenlp.data import JiebaTokenizer, Pad, Stack, Tuple, Vocab
S
Steffy-zxf 已提交
24 25
from paddlenlp.datasets import LCQMC

26
from utils import convert_example
S
Steffy-zxf 已提交
27 28 29

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
30 31
parser.add_argument("--epochs", type=int, default=10, help="Number of epoches for training.")
parser.add_argument('--use_gpu', type=eval, default=False, help="Whether use GPU for training, input should be True or False")
S
Steffy-zxf 已提交
32
parser.add_argument("--lr", type=float, default=5e-4, help="Learning rate used to train.")
33
parser.add_argument("--save_dir", type=str, default='checkpoints/', help="Directory to save model checkpoint")
S
Steffy-zxf 已提交
34
parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.")
35 36
parser.add_argument("--vocab_path", type=str, default="./simnet_word_dict.txt", help="The directory to dataset.")
parser.add_argument('--network', type=str, default="lstm", help="Which network you would like to choose bow, cnn, lstm or gru ?")
S
Steffy-zxf 已提交
37 38 39 40 41 42 43 44 45 46
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
args = parser.parse_args()
# yapf: enable


def create_dataloader(dataset,
                      trans_fn=None,
                      mode='train',
                      batch_size=1,
                      use_gpu=False,
47
                      batchify_fn=None):
S
Steffy-zxf 已提交
48 49 50 51 52
    """
    Creats dataloader.

    Args:
        dataset(obj:`paddle.io.Dataset`): Dataset instance.
53
        trans_fn(obj:`callable`, optional, defaults to `None`): function to convert a data sample to input ids, etc.
S
Steffy-zxf 已提交
54 55 56
        mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly.
        batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch.
        use_gpu(obj:`bool`, optional, defaults to obj:`False`): Whether to use gpu to run.
57 58 59
        batchify_fn(obj:`callable`, optional, defaults to `None`): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`).
S
Steffy-zxf 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    Returns:
        dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
    """
    if trans_fn:
        dataset = dataset.apply(trans_fn, lazy=True)

    if mode == 'train' and use_gpu:
        sampler = paddle.io.DistributedBatchSampler(
            dataset=dataset, batch_size=batch_size, shuffle=True)
    else:
        shuffle = True if mode == 'train' else False
        sampler = paddle.io.BatchSampler(
            dataset=dataset, batch_size=batch_size, shuffle=shuffle)
    dataloader = paddle.io.DataLoader(
        dataset,
        batch_sampler=sampler,
        return_list=True,
78
        collate_fn=batchify_fn)
S
Steffy-zxf 已提交
79 80 81 82 83 84 85 86 87 88
    return dataloader


if __name__ == "__main__":
    paddle.set_device('gpu') if args.use_gpu else paddle.set_device('cpu')

    # Loads vocab.
    if not os.path.exists(args.vocab_path):
        raise RuntimeError('The vocab_path  can not be found in the path %s' %
                           args.vocab_path)
89 90
    vocab = Vocab.load_vocabulary(
        args.vocab_path, unk_token='[UNK]', pad_token='[PAD]')
S
Steffy-zxf 已提交
91 92

    # Loads dataset.
93
    train_ds, dev_ds, test_ds = LCQMC.get_datasets(['train', 'dev', 'test'])
S
Steffy-zxf 已提交
94 95 96 97 98 99 100 101

    # Constructs the newtork.
    label_list = train_ds.get_labels()
    model = ppnlp.models.SimNet(
        network=args.network,
        vocab_size=len(vocab),
        num_classes=len(label_list))
    model = paddle.Model(model)
102 103 104
    new_vocab_file = open("./new_simnet_word_dict.txt", 'w', encoding='utf8')
    for token, index in vocab.token_to_idx.items():
        new_vocab_file.write(token + "\n")
S
Steffy-zxf 已提交
105 106

    # Reads data and generates mini-batches.
107 108 109 110 111 112 113 114 115
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=vocab.token_to_idx.get('[PAD]', 0)),  # query_ids
        Pad(axis=0, pad_val=vocab.token_to_idx.get('[PAD]', 0)),  # title_ids
        Stack(dtype="int64"),  # query_seq_lens
        Stack(dtype="int64"),  # title_seq_lens
        Stack(dtype="int64")  # label
    ): [data for data in fn(samples)]
    tokenizer = ppnlp.data.JiebaTokenizer(vocab)
    trans_fn = partial(convert_example, tokenizer=tokenizer, is_test=False)
S
Steffy-zxf 已提交
116
    train_loader = create_dataloader(
117 118 119 120 121 122
        train_ds,
        trans_fn=trans_fn,
        batch_size=args.batch_size,
        mode='train',
        use_gpu=args.use_gpu,
        batchify_fn=batchify_fn)
S
Steffy-zxf 已提交
123
    dev_loader = create_dataloader(
124
        dev_ds,
S
Steffy-zxf 已提交
125 126
        trans_fn=trans_fn,
        batch_size=args.batch_size,
127 128 129
        mode='validation',
        use_gpu=args.use_gpu,
        batchify_fn=batchify_fn)
S
Steffy-zxf 已提交
130
    test_loader = create_dataloader(
131 132 133 134 135 136
        test_ds,
        trans_fn=trans_fn,
        batch_size=args.batch_size,
        mode='test',
        use_gpu=args.use_gpu,
        batchify_fn=batchify_fn)
S
Steffy-zxf 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    optimizer = paddle.optimizer.Adam(
        parameters=model.parameters(), learning_rate=args.lr)

    # Defines loss and metric.
    criterion = paddle.nn.CrossEntropyLoss()
    metric = paddle.metric.Accuracy()

    model.prepare(optimizer, criterion, metric)

    # Loads pre-trained parameters.
    if args.init_from_ckpt:
        model.load(args.init_from_ckpt)
        print("Loaded checkpoint from %s" % args.init_from_ckpt)

    # Starts training and evaluating.
    model.fit(
        train_loader,
        dev_loader,
        epochs=args.epochs,
        save_dir=args.save_dir, )

    # Finally tests model.
    results = model.evaluate(test_loader)
    print("Finally test acc: %.5f" % results['acc'])