predict.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import argparse
import os
import random
import time

import numpy as np
import paddle
import paddle.nn.functional as F
import paddlenlp as ppnlp
from paddlenlp.data import Stack, Tuple, Pad

from model import SentenceTransformer

# yapf: disable
30 31 32 33 34 35 36
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, default='./checkpoint/model_2700/model_state.pdparams', help="The path to model parameters to be loaded.")
parser.add_argument("--max_seq_length", default=50, type=int, help="The maximum total input sequence length after tokenization. "
    "Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--n_gpu", type=int, default=0, help="Number of GPUs to use, 0 for CPU.")
args = parser.parse_args()
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
# yapf: enable


def convert_example(example,
                    tokenizer,
                    label_list,
                    max_seq_length=512,
                    is_test=False):
    """
    Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
    by concatenating and adding special tokens. And creates a mask from the two sequences passed 
    to be used in a sequence-pair classification task.
        
    A BERT sequence has the following format:

    - single sequence: ``[CLS] X [SEP]``
    - pair of sequences: ``[CLS] A [SEP] B [SEP]``

    A BERT sequence pair mask has the following format:
    ::
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |

    If only one sequence, only returns the first portion of the mask (0's).


    Args:
        example(obj:`list[str]`): List of input data, containing query, title and label if it have label.
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        label_list(obj:`list[str]`): All the labels that the data has.
        max_seq_len(obj:`int`): The maximum total input sequence length after tokenization. 
            Sequences longer than this will be truncated, sequences shorter will be padded.
        is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.

    Returns:
        query_input_ids(obj:`list[int]`): The list of query token ids.
        query_segment_ids(obj: `list[int]`): List of query sequence pair mask.
        title_input_ids(obj:`list[int]`): The list of title token ids.
        title_segment_ids(obj: `list[int]`): List of title sequence pair mask.
        label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
    """
    query, title = example[0], example[1]

    query_encoded_inputs = tokenizer.encode(
        text=query, max_seq_len=max_seq_length)
    query_input_ids = query_encoded_inputs["input_ids"]
    query_segment_ids = query_encoded_inputs["segment_ids"]

    title_encoded_inputs = tokenizer.encode(
        text=title, max_seq_len=max_seq_length)
    title_input_ids = title_encoded_inputs["input_ids"]
    title_segment_ids = title_encoded_inputs["segment_ids"]

    if not is_test:
        # create label maps if classification task
        label = example[-1]
        label_map = {}
        for (i, l) in enumerate(label_list):
            label_map[l] = i
        label = label_map[label]
        label = np.array([label], dtype="int64")
        return query_input_ids, query_segment_ids, title_input_ids, title_segment_ids, label
    else:
        return query_input_ids, query_segment_ids, title_input_ids, title_segment_ids


def predict(model, data, tokenizer, label_map, batch_size=1):
    """
    Predicts the data labels.

    Args:
        model (obj:`paddle.nn.Layer`): A model to classify texts.
        data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
            A Example object contains `text`(word_ids) and `se_len`(sequence length).
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        label_map(obj:`dict`): The label id (key) to label str (value) map.
        batch_size(obj:`int`, defaults to 1): The number of batch.

    Returns:
        results(obj:`dict`): All the predictions labels.
    """
    examples = []
    for text_pair in data:
        query_input_ids, query_segment_ids, title_input_ids, title_segment_ids = convert_example(
            text_pair,
            tokenizer,
            label_list=label_map.values(),
            max_seq_length=args.max_seq_length,
            is_test=True)
        examples.append((query_input_ids, query_segment_ids, title_input_ids,
                         title_segment_ids))

131 132 133 134 135
    # Seperates data into some batches.
    batches = [
        examples[idx:idx + batch_size]
        for idx in range(0, len(examples), batch_size)
    ]
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # query_input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # query_segment
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # title_input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # tilte_segment
    ): [data for data in fn(samples)]

    results = []
    model.eval()
    for batch in batches:
        query_input_ids, query_segment_ids, title_input_ids, title_segment_ids = batchify_fn(
            batch)

        query_input_ids = paddle.to_tensor(query_input_ids)
        query_segment_ids = paddle.to_tensor(query_segment_ids)
        title_input_ids = paddle.to_tensor(title_input_ids)
        title_segment_ids = paddle.to_tensor(title_segment_ids)

        probs = model(
            query_input_ids,
            title_input_ids,
            query_token_type_ids=query_segment_ids,
            title_token_type_ids=title_segment_ids)
        idx = paddle.argmax(probs, axis=1).numpy()
        idx = idx.tolist()
        labels = [label_map[i] for i in idx]
        results.extend(labels)
    return results


if __name__ == "__main__":
    paddle.set_device("gpu" if args.n_gpu else "cpu")

169 170 171
    # ErnieTinyTokenizer is special for ernie-tiny pretained model.
    tokenizer = ppnlp.transformers.ErnieTinyTokenizer.from_pretrained(
        'ernie-tiny')
172 173 174 175 176 177 178 179

    data = [
        ['世界上什么东西最小', '世界上什么东西最小?'],
        ['光眼睛大就好看吗', '眼睛好看吗?'],
        ['小蝌蚪找妈妈怎么样', '小蝌蚪找妈妈是谁画的'],
    ]
    label_map = {0: 'dissimilar', 1: 'similar'}

180 181
    pretrained_model = ppnlp.transformers.ErnieModel.from_pretrained(
        "ernie-tiny")
182 183 184 185 186 187 188 189 190 191 192
    model = SentenceTransformer(pretrained_model)

    if args.params_path and os.path.isfile(args.params_path):
        state_dict = paddle.load(args.params_path)
        model.set_dict(state_dict)
        print("Loaded parameters from %s" % args.params_path)

    results = predict(
        model, data, tokenizer, label_map, batch_size=args.batch_size)
    for idx, text in enumerate(data):
        print('Data: {} \t Lable: {}'.format(text, results[idx]))