val.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2018-present, Baidu, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################

"""Functions for validation."""

import os
19
import sys
20 21 22 23 24 25 26 27 28
import argparse
import functools
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers

from lib import pose_resnet
from utils.transforms import flip_back
from utils.utility import *
29
from utils.evaluator_builder import create_evaluator
30 31 32 33 34

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)

# yapf: disable
35 36
add_arg('batch_size',       int,   128,                 "Minibatch size.")
add_arg('dataset',          str,   'coco',              "Dataset")
37 38 39 40
add_arg('use_gpu',          bool,  True,                "Whether to use GPU or not.")
add_arg('num_epochs',       int,   140,                 "Number of epochs.")
add_arg('total_images',     int,   144406,              "Training image number.")
add_arg('kp_dim',           int,   16,                  "Class number.")
41
add_arg('with_mem_opt',     bool,  True,                "Whether to use memory optimization or not.")
42 43 44 45 46 47
add_arg('pretrained_model', str,   None,                "Whether to use pretrained model.")
add_arg('checkpoint',       str,   None,                "Whether to resume checkpoint.")
add_arg('lr',               float, 0.001,               "Set learning rate.")
add_arg('lr_strategy',      str,   "piecewise_decay",   "Set the learning rate decay strategy.")
add_arg('flip_test',        bool,  True,                "Flip test")
add_arg('shift_heatmap',    bool,  True,                "Shift heatmap")
48 49
add_arg('post_process',     bool,  True,                "Post process")
add_arg('data_root',        str,   "data/coco",         "Root directory of dataset")
50 51
# yapf: enable

52 53 54 55 56 57

def print_immediately(s):
    print(s)
    sys.stdout.flush()


58 59 60 61 62 63 64
def valid(args):
    if args.dataset == 'coco':
        import lib.coco_reader as reader
        IMAGE_SIZE = [288, 384]
        HEATMAP_SIZE = [72, 96]
        FLIP_PAIRS = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]
        args.kp_dim = 17
65
        args.total_images = 6108
66 67 68 69 70 71
    elif args.dataset == 'mpii':
        import lib.mpii_reader as reader
        IMAGE_SIZE = [384, 384]
        HEATMAP_SIZE = [96, 96]
        FLIP_PAIRS = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
        args.kp_dim = 16
72
        args.total_images = 2958
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    else:
        raise ValueError('The dataset {} is not supported yet.'.format(args.dataset))

    print_arguments(args)

    # Image and target
    image = layers.data(name='image', shape=[3, IMAGE_SIZE[1], IMAGE_SIZE[0]], dtype='float32')
    target = layers.data(name='target', shape=[args.kp_dim, HEATMAP_SIZE[1], HEATMAP_SIZE[0]], dtype='float32')
    target_weight = layers.data(name='target_weight', shape=[args.kp_dim, 1], dtype='float32')
    center = layers.data(name='center', shape=[2,], dtype='float32')
    scale = layers.data(name='scale', shape=[2,], dtype='float32')
    score = layers.data(name='score', shape=[1,], dtype='float32')

    # Build model
    model = pose_resnet.ResNet(layers=50, kps_num=args.kp_dim)

    # Output
    loss, output = model.net(input=image, target=target, target_weight=target_weight)

    # Parameters from model and arguments
    params = {}
    params["total_images"] = args.total_images
    params["lr"] = args.lr
    params["num_epochs"] = args.num_epochs
    params["learning_strategy"] = {}
    params["learning_strategy"]["batch_size"] = args.batch_size
    params["learning_strategy"]["name"] = args.lr_strategy

    if args.with_mem_opt:
        fluid.memory_optimize(fluid.default_main_program(),
                              skip_opt_set=[loss.name, output.name, target.name])

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if args.pretrained_model:
        def if_exist(var):
            exist_flag = os.path.exists(os.path.join(args.pretrained_model, var.name))
112 113
            if exist_flag:
                print("Copy pretrianed weights from: %s" % var.name)
114 115 116 117 118 119 120 121 122 123 124 125
            return exist_flag
        fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)

    if args.checkpoint is not None:
        fluid.io.load_persistables(exe, args.checkpoint)

    # Dataloader
    valid_reader = paddle.batch(reader.valid(), batch_size=args.batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, target, target_weight, center, scale, score])

    valid_exe = fluid.ParallelExecutor(
            use_cuda=True if args.use_gpu else False,
126
            main_program=fluid.default_main_program().clone(for_test=True),
127 128 129 130 131 132 133 134 135
            loss_name=loss.name)

    fetch_list = [image.name, loss.name, output.name, target.name]

    # For validation
    acc = AverageMeter()
    idx = 0

    num_samples = args.total_images
136
    all_preds = np.zeros((num_samples, args.kp_dim, 3), dtype=np.float32)
137 138
    all_boxes = np.zeros((num_samples, 6))

139 140 141 142 143 144 145 146 147
    image_path = []
    for batch_id, meta in enumerate(valid_reader()):
        num_images = len(meta)
        data = meta
        if args.dataset == 'coco':
            for i in range(num_images):
                image_path.append(meta[i][-1])
                data[i] = data[i][:-1]

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        num_images = len(data)

        centers = []
        scales = []
        scores = []
        for i in range(num_images):
            centers.append(data[i][3])
            scales.append(data[i][4])
            scores.append(data[i][5])

        input_image, loss, out_heatmaps, target_heatmaps = valid_exe.run(
                fetch_list=fetch_list,
                feed=feeder.feed(data))

        if args.flip_test:
            # Flip all the images in a same batch
            data_fliped = []
            for i in range(num_images):
                # Input, target, target_weight, c, s, score
                data_fliped.append((
                            # np.flip(input_image, 3)[i],
                            data[i][0][:, :, ::-1],
                            data[i][1],
                            data[i][2],
                            data[i][3],
                            data[i][4],
                            data[i][5]))

            # Inference again
            _, _, output_flipped, _ = valid_exe.run(
                    fetch_list=fetch_list,
                    feed=feeder.feed(data_fliped))

            # Flip back
            output_flipped = flip_back(output_flipped, FLIP_PAIRS)

            # Feature is not aligned, shift flipped heatmap for higher accuracy
            if args.shift_heatmap:
                output_flipped[:, :, :, 1:] = \
                        output_flipped.copy()[:, :, :, 0:-1]

            # Aggregate
            # out_heatmaps.shape: size[b, args.kp_dim, 96, 96]
            out_heatmaps = (out_heatmaps + output_flipped) * 0.5

        loss = np.mean(np.array(loss))

        # Accuracy
        _, avg_acc, cnt, pred = accuracy(out_heatmaps, target_heatmaps)
        acc.update(avg_acc, cnt)

        # Current center, scale, score
        centers = np.array(centers)
        scales = np.array(scales)
        scores = np.array(scores)

        preds, maxvals = get_final_preds(
            args, out_heatmaps, centers, scales)

        all_preds[idx:idx + num_images, :, 0:2] = preds[:, :, 0:2]
        all_preds[idx:idx + num_images, :, 2:3] = maxvals
        # Double check this all_boxes parts
        all_boxes[idx:idx + num_images, 0:2] = centers[:, 0:2]
        all_boxes[idx:idx + num_images, 2:4] = scales[:, 0:2]
        all_boxes[idx:idx + num_images, 4] = np.prod(scales*200, 1)
        all_boxes[idx:idx + num_images, 5] = scores

        idx += num_images

217
        print_immediately('Epoch [{:4d}] '
218 219 220 221 222 223 224
              'Loss = {:.5f} '
              'Acc = {:.5f}'.format(batch_id, loss, acc.avg))

        if batch_id % 10 == 0:
            save_batch_heatmaps(input_image, out_heatmaps, file_name='visualization@val.jpg', normalize=True)

    # Evaluate
225 226 227
    output_dir = './'
    evaluator = create_evaluator(args.dataset)(args.data_root, args.kp_dim)
    name_values, perf_indicator = evaluator.evaluate(all_preds, output_dir, all_boxes, image_path)
228 229 230 231 232 233
    print_name_value(name_values, perf_indicator)


if __name__ == '__main__':
    args = parser.parse_args()
    valid(args)