preprocess.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import numpy as np
from keypoint_preprocess import get_affine_transform
from PIL import Image


def decode_image(im_file, im_info):
    """read rgb image
    Args:
        im_file (str|np.ndarray): input can be image path or np.ndarray
        im_info (dict): info of image
    Returns:
        im (np.ndarray):  processed image (np.ndarray)
        im_info (dict): info of processed image
    """
    if isinstance(im_file, str):
        with open(im_file, 'rb') as f:
            im_read = f.read()
        data = np.frombuffer(im_read, dtype='uint8')
        im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    else:
        im = im_file
    im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
    im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32)
    return im, im_info


class Resize_Mult32(object):
    """resize image by target_size and max_size
    Args:
        target_size (int): the target size of image
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): method of resize
    """

    def __init__(self, limit_side_len, limit_type, interp=cv2.INTER_LINEAR):
        self.limit_side_len = limit_side_len
        self.limit_type = limit_type
        self.interp = interp

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, img):
        """
        Args:
            img (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        limit_side_len = self.limit_side_len
        h, w, c = img.shape

        # limit the max side
        if self.limit_type == 'max':
            if h > w:
                ratio = float(limit_side_len) / h
            else:
                ratio = float(limit_side_len) / w
        elif self.limit_type == 'min':
            if h < w:
                ratio = float(limit_side_len) / h
            else:
                ratio = float(limit_side_len) / w
        elif self.limit_type == 'resize_long':
            ratio = float(limit_side_len) / max(h, w)
        else:
            raise Exception('not support limit type, image ')
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)

        im_scale_y = resize_h / float(h)
        im_scale_x = resize_w / float(w)
        return im_scale_y, im_scale_x


class Resize(object):
    """resize image by target_size and max_size
    Args:
        target_size (int): the target size of image
        keep_ratio (bool): whether keep_ratio or not, default true
        interp (int): method of resize
    """

    def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.keep_ratio = keep_ratio
        self.interp = interp

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
        if self.keep_ratio:
            im_size_min = np.min(origin_shape)
            im_size_max = np.max(origin_shape)
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
            im_scale = float(target_size_min) / float(im_size_min)
            if np.round(im_scale * im_size_max) > target_size_max:
                im_scale = float(target_size_max) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / float(origin_shape[0])
            im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x


class ShortSizeScale(object):
    """
    Scale images by short size.
    Args:
        short_size(float | int): Short size of an image will be scaled to the short_size.
        fixed_ratio(bool): Set whether to zoom according to a fixed ratio. default: True
        do_round(bool): Whether to round up when calculating the zoom ratio. default: False
        backend(str): Choose pillow or cv2 as the graphics processing backend. default: 'pillow'
    """

    def __init__(self,
                 short_size,
                 fixed_ratio=True,
                 keep_ratio=None,
                 do_round=False,
                 backend='pillow'):
        self.short_size = short_size
        assert (fixed_ratio and not keep_ratio) or (
            not fixed_ratio
        ), "fixed_ratio and keep_ratio cannot be true at the same time"
        self.fixed_ratio = fixed_ratio
        self.keep_ratio = keep_ratio
        self.do_round = do_round

        assert backend in [
            'pillow', 'cv2'
        ], "Scale's backend must be pillow or cv2, but get {backend}"

        self.backend = backend

    def __call__(self, img):
        """
        Performs resize operations.
        Args:
            img (PIL.Image): a PIL.Image.
        return:
            resized_img: a PIL.Image after scaling.
        """

        result_img = None

        if isinstance(img, np.ndarray):
            h, w, _ = img.shape
        elif isinstance(img, Image.Image):
            w, h = img.size
        else:
            raise NotImplementedError

        if w <= h:
            ow = self.short_size
            if self.fixed_ratio:  # default is True
                oh = int(self.short_size * 4.0 / 3.0)
            elif not self.keep_ratio:  # no
                oh = self.short_size
            else:
                scale_factor = self.short_size / w
                oh = int(h * float(scale_factor) +
                         0.5) if self.do_round else int(h * self.short_size / w)
                ow = int(w * float(scale_factor) +
                         0.5) if self.do_round else int(w * self.short_size / h)
        else:
            oh = self.short_size
            if self.fixed_ratio:
                ow = int(self.short_size * 4.0 / 3.0)
            elif not self.keep_ratio:  # no
                ow = self.short_size
            else:
                scale_factor = self.short_size / h
                oh = int(h * float(scale_factor) +
                         0.5) if self.do_round else int(h * self.short_size / w)
                ow = int(w * float(scale_factor) +
                         0.5) if self.do_round else int(w * self.short_size / h)

        if type(img) == np.ndarray:
            img = Image.fromarray(img, mode='RGB')

        if self.backend == 'pillow':
            result_img = img.resize((ow, oh), Image.BILINEAR)
        elif self.backend == 'cv2' and (self.keep_ratio is not None):
            result_img = cv2.resize(
                img, (ow, oh), interpolation=cv2.INTER_LINEAR)
        else:
            result_img = Image.fromarray(
                cv2.resize(
                    np.asarray(img), (ow, oh), interpolation=cv2.INTER_LINEAR))

        return result_img


class NormalizeImage(object):
    """normalize image
    Args:
        mean (list): im - mean
        std (list): im / std
        is_scale (bool): whether need im / 255
        norm_type (str): type in ['mean_std', 'none']
    """

    def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        self.norm_type = norm_type

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.astype(np.float32, copy=False)
        if self.is_scale:
            scale = 1.0 / 255.0
            im *= scale

        if self.norm_type == 'mean_std':
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
            im -= mean
            im /= std
        return im, im_info


class Permute(object):
    """permute image
    Args:
        to_bgr (bool): whether convert RGB to BGR 
        channel_first (bool): whether convert HWC to CHW
    """

    def __init__(self, ):
        super(Permute, self).__init__()

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.transpose((2, 0, 1)).copy()
        return im, im_info


class PadStride(object):
    """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
    Args:
        stride (bool): model with FPN need image shape % stride == 0
    """

    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        coarsest_stride = self.coarsest_stride
        if coarsest_stride <= 0:
            return im, im_info
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
        return padding_im, im_info


class LetterBoxResize(object):
    def __init__(self, target_size):
        """
        Resize image to target size, convert normalized xywh to pixel xyxy
        format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
        Args:
            target_size (int|list): image target size.
        """
        super(LetterBoxResize, self).__init__()
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size

    def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
        # letterbox: resize a rectangular image to a padded rectangular
        shape = img.shape[:2]  # [height, width]
        ratio_h = float(height) / shape[0]
        ratio_w = float(width) / shape[1]
        ratio = min(ratio_h, ratio_w)
        new_shape = (round(shape[1] * ratio),
                     round(shape[0] * ratio))  # [width, height]
        padw = (width - new_shape[0]) / 2
        padh = (height - new_shape[1]) / 2
        top, bottom = round(padh - 0.1), round(padh + 0.1)
        left, right = round(padw - 0.1), round(padw + 0.1)

        img = cv2.resize(
            img, new_shape, interpolation=cv2.INTER_AREA)  # resized, no border
        img = cv2.copyMakeBorder(
            img, top, bottom, left, right, cv2.BORDER_CONSTANT,
            value=color)  # padded rectangular
        return img, ratio, padw, padh

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        height, width = self.target_size
        h, w = im.shape[:2]
        im, ratio, padw, padh = self.letterbox(im, height=height, width=width)

        new_shape = [round(h * ratio), round(w * ratio)]
        im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
        im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
        return im, im_info


class Pad(object):
    def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
        """
        Pad image to a specified size.
        Args:
            size (list[int]): image target size
            fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
        """
        super(Pad, self).__init__()
        if isinstance(size, int):
            size = [size, size]
        self.size = size
        self.fill_value = fill_value

    def __call__(self, im, im_info):
        im_h, im_w = im.shape[:2]
        h, w = self.size
        if h == im_h and w == im_w:
            im = im.astype(np.float32)
            return im, im_info

        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
        im = canvas
        return im, im_info


class WarpAffine(object):
    """Warp affine the image
    """

    def __init__(self,
                 keep_res=False,
                 pad=31,
                 input_h=512,
                 input_w=512,
                 scale=0.4,
                 shift=0.1):
        self.keep_res = keep_res
        self.pad = pad
        self.input_h = input_h
        self.input_w = input_w
        self.scale = scale
        self.shift = shift

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)

        h, w = img.shape[:2]

        if self.keep_res:
            input_h = (h | self.pad) + 1
            input_w = (w | self.pad) + 1
            s = np.array([input_w, input_h], dtype=np.float32)
            c = np.array([w // 2, h // 2], dtype=np.float32)

        else:
            s = max(h, w) * 1.0
            input_h, input_w = self.input_h, self.input_w
            c = np.array([w / 2., h / 2.], dtype=np.float32)

        trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
        img = cv2.resize(img, (w, h))
        inp = cv2.warpAffine(
            img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
        return inp, im_info


def preprocess(im, preprocess_ops):
    # process image by preprocess_ops
    im_info = {
        'scale_factor': np.array(
            [1., 1.], dtype=np.float32),
        'im_shape': None,
    }
    im, im_info = decode_image(im, im_info)
    for operator in preprocess_ops:
        im, im_info = operator(im, im_info)
    return im, im_info