picodet_postprocess.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from scipy.special import softmax


def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
    """
    Args:
        box_scores (N, 5): boxes in corner-form and probabilities.
        iou_threshold: intersection over union threshold.
        top_k: keep top_k results. If k <= 0, keep all the results.
        candidate_size: only consider the candidates with the highest scores.
    Returns:
         picked: a list of indexes of the kept boxes
    """
    scores = box_scores[:, -1]
    boxes = box_scores[:, :-1]
    picked = []
    indexes = np.argsort(scores)
    indexes = indexes[-candidate_size:]
    while len(indexes) > 0:
        current = indexes[-1]
        picked.append(current)
        if 0 < top_k == len(picked) or len(indexes) == 1:
            break
        current_box = boxes[current, :]
        indexes = indexes[:-1]
        rest_boxes = boxes[indexes, :]
        iou = iou_of(
            rest_boxes,
            np.expand_dims(
                current_box, axis=0), )
        indexes = indexes[iou <= iou_threshold]

    return box_scores[picked, :]


def iou_of(boxes0, boxes1, eps=1e-5):
    """Return intersection-over-union (Jaccard index) of boxes.
    Args:
        boxes0 (N, 4): ground truth boxes.
        boxes1 (N or 1, 4): predicted boxes.
        eps: a small number to avoid 0 as denominator.
    Returns:
        iou (N): IoU values.
    """
    overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
    overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])

    overlap_area = area_of(overlap_left_top, overlap_right_bottom)
    area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
    area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
    return overlap_area / (area0 + area1 - overlap_area + eps)


def area_of(left_top, right_bottom):
    """Compute the areas of rectangles given two corners.
    Args:
        left_top (N, 2): left top corner.
        right_bottom (N, 2): right bottom corner.
    Returns:
        area (N): return the area.
    """
    hw = np.clip(right_bottom - left_top, 0.0, None)
    return hw[..., 0] * hw[..., 1]


class PicoDetPostProcess(object):
    """
    Args:
        input_shape (int): network input image size
        ori_shape (int): ori image shape of before padding
        scale_factor (float): scale factor of ori image
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 input_shape,
                 ori_shape,
                 scale_factor,
                 strides=[8, 16, 32, 64],
                 score_threshold=0.4,
                 nms_threshold=0.5,
                 nms_top_k=1000,
                 keep_top_k=100):
        self.ori_shape = ori_shape
        self.input_shape = input_shape
        self.scale_factor = scale_factor
        self.strides = strides
        self.score_threshold = score_threshold
        self.nms_threshold = nms_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k

    def warp_boxes(self, boxes, ori_shape):
        """Apply transform to boxes
        """
        width, height = ori_shape[1], ori_shape[0]
        n = len(boxes)
        if n:
            # warp points
            xy = np.ones((n * 4, 3))
            xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
                n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
            # xy = xy @ M.T  # transform
            xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)  # rescale
            # create new boxes
            x = xy[:, [0, 2, 4, 6]]
            y = xy[:, [1, 3, 5, 7]]
            xy = np.concatenate(
                (x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
            # clip boxes
            xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
            xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
            return xy.astype(np.float32)
        else:
            return boxes

    def __call__(self, scores, raw_boxes):
        batch_size = raw_boxes[0].shape[0]
        reg_max = int(raw_boxes[0].shape[-1] / 4 - 1)
        out_boxes_num = []
        out_boxes_list = []
        for batch_id in range(batch_size):
            # generate centers
            decode_boxes = []
            select_scores = []
            for stride, box_distribute, score in zip(self.strides, raw_boxes,
                                                     scores):
                box_distribute = box_distribute[batch_id]
                score = score[batch_id]
                # centers
                fm_h = self.input_shape[0] / stride
                fm_w = self.input_shape[1] / stride
                h_range = np.arange(fm_h)
                w_range = np.arange(fm_w)
                ww, hh = np.meshgrid(w_range, h_range)
                ct_row = (hh.flatten() + 0.5) * stride
                ct_col = (ww.flatten() + 0.5) * stride
                center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1)

                # box distribution to distance
                reg_range = np.arange(reg_max + 1)
                box_distance = box_distribute.reshape((-1, reg_max + 1))
                box_distance = softmax(box_distance, axis=1)
                box_distance = box_distance * np.expand_dims(reg_range, axis=0)
                box_distance = np.sum(box_distance, axis=1).reshape((-1, 4))
                box_distance = box_distance * stride

                # top K candidate
                topk_idx = np.argsort(score.max(axis=1))[::-1]
                topk_idx = topk_idx[:self.nms_top_k]
                center = center[topk_idx]
                score = score[topk_idx]
                box_distance = box_distance[topk_idx]

                # decode box
                decode_box = center + [-1, -1, 1, 1] * box_distance

                select_scores.append(score)
                decode_boxes.append(decode_box)

            # nms
            bboxes = np.concatenate(decode_boxes, axis=0)
            confidences = np.concatenate(select_scores, axis=0)
            picked_box_probs = []
            picked_labels = []
            for class_index in range(0, confidences.shape[1]):
                probs = confidences[:, class_index]
                mask = probs > self.score_threshold
                probs = probs[mask]
                if probs.shape[0] == 0:
                    continue
                subset_boxes = bboxes[mask, :]
                box_probs = np.concatenate(
                    [subset_boxes, probs.reshape(-1, 1)], axis=1)
                box_probs = hard_nms(
                    box_probs,
                    iou_threshold=self.nms_threshold,
                    top_k=self.keep_top_k, )
                picked_box_probs.append(box_probs)
                picked_labels.extend([class_index] * box_probs.shape[0])

            if len(picked_box_probs) == 0:
                out_boxes_list.append(np.empty((0, 4)))
                out_boxes_num.append(0)

            else:
                picked_box_probs = np.concatenate(picked_box_probs)

                # resize output boxes
                picked_box_probs[:, :4] = self.warp_boxes(
                    picked_box_probs[:, :4], self.ori_shape[batch_id])
                im_scale = np.concatenate([
                    self.scale_factor[batch_id][::-1],
                    self.scale_factor[batch_id][::-1]
                ])
                picked_box_probs[:, :4] /= im_scale
                # clas score box
                out_boxes_list.append(
                    np.concatenate(
                        [
                            np.expand_dims(
                                np.array(picked_labels),
                                axis=-1), np.expand_dims(
                                    picked_box_probs[:, 4], axis=-1),
                            picked_box_probs[:, :4]
                        ],
                        axis=1))
                out_boxes_num.append(len(picked_labels))

        out_boxes_list = np.concatenate(out_boxes_list, axis=0)
        out_boxes_num = np.asarray(out_boxes_num).astype(np.int32)
        return out_boxes_list, out_boxes_num