keypoint_infer.py 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import glob
from functools import reduce

from PIL import Image
import cv2
import math
import numpy as np
import paddle

import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

from preprocess import preprocess, NormalizeImage, Permute
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
from visualize import visualize_pose
from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
from infer import Detector, get_test_images, print_arguments

# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}


class KeyPointDetector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        use_dark(bool): whether to use postprocess in DarkPose
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 use_dark=True):
        super(KeyPointDetector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
        self.use_dark = use_dark

    def set_config(self, model_dir):
        return PredictConfig_KeyPoint(model_dir)

    def get_person_from_rect(self, image, results):
        # crop the person result from image
        self.det_times.preprocess_time_s.start()
        valid_rects = results['boxes']
        rect_images = []
        new_rects = []
        org_rects = []
        for rect in valid_rects:
            rect_image, new_rect, org_rect = expand_crop(image, rect)
            if rect_image is None or rect_image.size == 0:
                continue
            rect_images.append(rect_image)
            new_rects.append(new_rect)
            org_rects.append(org_rect)
        self.det_times.preprocess_time_s.end()
        return rect_images, new_rects, org_rects

    def postprocess(self, inputs, result):
        np_heatmap = result['heatmap']
        np_masks = result['masks']
        # postprocess output of predictor
        if KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_bottomup':
            results = {}
            h, w = inputs['im_shape'][0]
            preds = [np_heatmap]
            if np_masks is not None:
                preds += np_masks
            preds += [h, w]
            keypoint_postprocess = HrHRNetPostProcess()
            kpts, scores = keypoint_postprocess(*preds)
            results['keypoint'] = kpts
            results['score'] = scores
            return results
        elif KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_topdown':
            results = {}
            imshape = inputs['im_shape'][:, ::-1]
            center = np.round(imshape / 2.)
            scale = imshape / 200.
            keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
            kpts, scores = keypoint_postprocess(np_heatmap, center, scale)
            results['keypoint'] = kpts
            results['score'] = scores
            return results
        else:
            raise ValueError("Unsupported arch: {}, expect {}".format(
                self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))

    def predict(self, repeats=1):
        '''
        Args:
            repeats (int): repeat number for prediction
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
        # model prediction
        np_heatmap, np_masks = None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            heatmap_tensor = self.predictor.get_output_handle(output_names[0])
            np_heatmap = heatmap_tensor.copy_to_cpu()
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]
        result = dict(heatmap=np_heatmap, masks=np_masks)
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        results = []
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu

            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    if not os.path.exists(self.output_dir):
                        os.makedirs(self.output_dir)
                    visualize(
                        batch_image_list,
                        result,
                        visual_thresh=self.threshold,
                        save_dir=self.output_dir)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))
        results = self.merge_batch_result(results)
        return results

    def predict_video(self, video_file, camera_id):
        video_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
            im_results = {}
            im_results['keypoint'] = [results['keypoint'], results['score']]
            im = visualize_pose(
                frame, im_results, visual_thresh=self.threshold, returnimg=True)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()


def create_inputs(imgs, im_info):
    """generate input for different model type
    Args:
        imgs (list(numpy)): list of image (np.ndarray)
        im_info (list(dict)): list of image info
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = np.stack(imgs, axis=0).astype('float32')
    im_shape = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'])).astype('float32'))
    inputs['im_shape'] = np.stack(im_shape, axis=0)
    return inputs


class PredictConfig_KeyPoint():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.tagmap = False
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
        if 'keypoint_bottomup' == self.archcls:
            self.tagmap = True
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in KEYPOINT_SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], KEYPOINT_SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def visualize(image_list, results, visual_thresh=0.6, save_dir='output'):
    im_results = {}
    for i, image_file in enumerate(image_list):
        skeletons = results['keypoint']
        scores = results['score']
        skeleton = skeletons[i:i + 1]
        score = scores[i:i + 1]
        im_results['keypoint'] = [skeleton, score]
        visualize_pose(
            image_file,
            im_results,
            visual_thresh=visual_thresh,
            save_dir=save_dir)


def main():
    detector = KeyPointDetector(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir,
        use_dark=FLAGS.use_dark)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('KeyPoint')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"

    main()