benchmark_utils.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import logging

import paddle
import paddle.inference as paddle_infer

from pathlib import Path

CUR_DIR = os.path.dirname(os.path.abspath(__file__))
LOG_PATH_ROOT = f"{CUR_DIR}/../../output"


class PaddleInferBenchmark(object):
    def __init__(self,
                 config,
                 model_info: dict={},
                 data_info: dict={},
                 perf_info: dict={},
                 resource_info: dict={},
                 **kwargs):
        """
        Construct PaddleInferBenchmark Class to format logs.
        args:
            config(paddle.inference.Config): paddle inference config
            model_info(dict): basic model info
                {'model_name': 'resnet50'
                 'precision': 'fp32'}
            data_info(dict): input data info
                {'batch_size': 1
                 'shape': '3,224,224'
                 'data_num': 1000}
            perf_info(dict): performance result
                {'preprocess_time_s': 1.0
                'inference_time_s': 2.0
                'postprocess_time_s': 1.0
                'total_time_s': 4.0}
            resource_info(dict): 
                cpu and gpu resources
                {'cpu_rss': 100
                 'gpu_rss': 100
                 'gpu_util': 60}
        """
        # PaddleInferBenchmark Log Version
        self.log_version = "1.0.3"

        # Paddle Version
        self.paddle_version = paddle.__version__
        self.paddle_commit = paddle.__git_commit__
        paddle_infer_info = paddle_infer.get_version()
        self.paddle_branch = paddle_infer_info.strip().split(': ')[-1]

        # model info
        self.model_info = model_info

        # data info
        self.data_info = data_info

        # perf info
        self.perf_info = perf_info

        try:
            # required value
            self.model_name = model_info['model_name']
            self.precision = model_info['precision']

            self.batch_size = data_info['batch_size']
            self.shape = data_info['shape']
            self.data_num = data_info['data_num']

            self.inference_time_s = round(perf_info['inference_time_s'], 4)
        except:
            self.print_help()
            raise ValueError(
                "Set argument wrong, please check input argument and its type")

        self.preprocess_time_s = perf_info.get('preprocess_time_s', 0)
        self.postprocess_time_s = perf_info.get('postprocess_time_s', 0)
        self.with_tracker = True if 'tracking_time_s' in perf_info else False
        self.tracking_time_s = perf_info.get('tracking_time_s', 0)
        self.total_time_s = perf_info.get('total_time_s', 0)

        self.inference_time_s_90 = perf_info.get("inference_time_s_90", "")
        self.inference_time_s_99 = perf_info.get("inference_time_s_99", "")
        self.succ_rate = perf_info.get("succ_rate", "")
        self.qps = perf_info.get("qps", "")

        # conf info
        self.config_status = self.parse_config(config)

        # mem info
        if isinstance(resource_info, dict):
            self.cpu_rss_mb = int(resource_info.get('cpu_rss_mb', 0))
            self.cpu_vms_mb = int(resource_info.get('cpu_vms_mb', 0))
            self.cpu_shared_mb = int(resource_info.get('cpu_shared_mb', 0))
            self.cpu_dirty_mb = int(resource_info.get('cpu_dirty_mb', 0))
            self.cpu_util = round(resource_info.get('cpu_util', 0), 2)

            self.gpu_rss_mb = int(resource_info.get('gpu_rss_mb', 0))
            self.gpu_util = round(resource_info.get('gpu_util', 0), 2)
            self.gpu_mem_util = round(resource_info.get('gpu_mem_util', 0), 2)
        else:
            self.cpu_rss_mb = 0
            self.cpu_vms_mb = 0
            self.cpu_shared_mb = 0
            self.cpu_dirty_mb = 0
            self.cpu_util = 0

            self.gpu_rss_mb = 0
            self.gpu_util = 0
            self.gpu_mem_util = 0

        # init benchmark logger
        self.benchmark_logger()

    def benchmark_logger(self):
        """
        benchmark logger
        """
        # remove other logging handler
        for handler in logging.root.handlers[:]:
            logging.root.removeHandler(handler)

        # Init logger
        FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        log_output = f"{LOG_PATH_ROOT}/{self.model_name}.log"
        Path(f"{LOG_PATH_ROOT}").mkdir(parents=True, exist_ok=True)
        logging.basicConfig(
            level=logging.INFO,
            format=FORMAT,
            handlers=[
                logging.FileHandler(
                    filename=log_output, mode='w'),
                logging.StreamHandler(),
            ])
        self.logger = logging.getLogger(__name__)
        self.logger.info(
            f"Paddle Inference benchmark log will be saved to {log_output}")

    def parse_config(self, config) -> dict:
        """
        parse paddle predictor config
        args:
            config(paddle.inference.Config): paddle inference config
        return:
            config_status(dict): dict style config info
        """
        if isinstance(config, paddle_infer.Config):
            config_status = {}
            config_status['runtime_device'] = "gpu" if config.use_gpu(
            ) else "cpu"
            config_status['ir_optim'] = config.ir_optim()
            config_status['enable_tensorrt'] = config.tensorrt_engine_enabled()
            config_status['precision'] = self.precision
            config_status['enable_mkldnn'] = config.mkldnn_enabled()
            config_status[
                'cpu_math_library_num_threads'] = config.cpu_math_library_num_threads(
                )
        elif isinstance(config, dict):
            config_status['runtime_device'] = config.get('runtime_device', "")
            config_status['ir_optim'] = config.get('ir_optim', "")
            config_status['enable_tensorrt'] = config.get('enable_tensorrt', "")
            config_status['precision'] = config.get('precision', "")
            config_status['enable_mkldnn'] = config.get('enable_mkldnn', "")
            config_status['cpu_math_library_num_threads'] = config.get(
                'cpu_math_library_num_threads', "")
        else:
            self.print_help()
            raise ValueError(
                "Set argument config wrong, please check input argument and its type"
            )
        return config_status

    def report(self, identifier=None):
        """
        print log report
        args:
            identifier(string): identify log
        """
        if identifier:
            identifier = f"[{identifier}]"
        else:
            identifier = ""

        self.logger.info("\n")
        self.logger.info(
            "---------------------- Paddle info ----------------------")
        self.logger.info(f"{identifier} paddle_version: {self.paddle_version}")
        self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}")
        self.logger.info(f"{identifier} paddle_branch: {self.paddle_branch}")
        self.logger.info(f"{identifier} log_api_version: {self.log_version}")
        self.logger.info(
            "----------------------- Conf info -----------------------")
        self.logger.info(
            f"{identifier} runtime_device: {self.config_status['runtime_device']}"
        )
        self.logger.info(
            f"{identifier} ir_optim: {self.config_status['ir_optim']}")
        self.logger.info(f"{identifier} enable_memory_optim: {True}")
        self.logger.info(
            f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}"
        )
        self.logger.info(
            f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}")
        self.logger.info(
            f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}"
        )
        self.logger.info(
            "----------------------- Model info ----------------------")
        self.logger.info(f"{identifier} model_name: {self.model_name}")
        self.logger.info(f"{identifier} precision: {self.precision}")
        self.logger.info(
            "----------------------- Data info -----------------------")
        self.logger.info(f"{identifier} batch_size: {self.batch_size}")
        self.logger.info(f"{identifier} input_shape: {self.shape}")
        self.logger.info(f"{identifier} data_num: {self.data_num}")
        self.logger.info(
            "----------------------- Perf info -----------------------")
        self.logger.info(
            f"{identifier} cpu_rss(MB): {self.cpu_rss_mb}, cpu_vms: {self.cpu_vms_mb}, cpu_shared_mb: {self.cpu_shared_mb}, cpu_dirty_mb: {self.cpu_dirty_mb}, cpu_util: {self.cpu_util}%"
        )
        self.logger.info(
            f"{identifier} gpu_rss(MB): {self.gpu_rss_mb}, gpu_util: {self.gpu_util}%, gpu_mem_util: {self.gpu_mem_util}%"
        )
        self.logger.info(
            f"{identifier} total time spent(s): {self.total_time_s}")

        if self.with_tracker:
            self.logger.info(
                f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, "
                f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, "
                f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}, "
                f"tracking_time(ms): {round(self.tracking_time_s*1000, 1)}")
        else:
            self.logger.info(
                f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, "
                f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, "
                f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}"
            )
        if self.inference_time_s_90:
            self.looger.info(
                f"{identifier} 90%_cost: {self.inference_time_s_90}, 99%_cost: {self.inference_time_s_99}, succ_rate: {self.succ_rate}"
            )
        if self.qps:
            self.logger.info(f"{identifier} QPS: {self.qps}")

    def print_help(self):
        """
        print function help
        """
        print("""Usage: 
            ==== Print inference benchmark logs. ====
            config = paddle.inference.Config()
            model_info = {'model_name': 'resnet50'
                          'precision': 'fp32'}
            data_info = {'batch_size': 1
                         'shape': '3,224,224'
                         'data_num': 1000}
            perf_info = {'preprocess_time_s': 1.0
                         'inference_time_s': 2.0
                         'postprocess_time_s': 1.0
                         'total_time_s': 4.0}
            resource_info = {'cpu_rss_mb': 100
                             'gpu_rss_mb': 100
                             'gpu_util': 60}
            log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
            log('Test')
            """)

    def __call__(self, identifier=None):
        """
        __call__
        args:
            identifier(string): identify log
        """
        self.report(identifier)