resnet.py 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import Variable
from paddle.fluid.regularizer import L2Decay
25
from paddle.fluid.initializer import Constant
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

from ppdet.core.workspace import register, serializable
from numbers import Integral

from .name_adapter import NameAdapter

__all__ = ['ResNet', 'ResNetC5']


@register
@serializable
class ResNet(object):
    """
    Residual Network, see https://arxiv.org/abs/1512.03385
    Args:
        depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
        freeze_at (int): freeze the backbone at which stage
43
        norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
44 45 46
        freeze_norm (bool): freeze normalization layers
        norm_decay (float): weight decay for normalization layer weights
        variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
47
        feature_maps (list): index of stages whose feature maps are returned
48
        dcn_v2_stages (list): index of stages who select deformable conv v2
49 50 51 52 53 54 55 56 57
    """

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='affine_channel',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
58 59
                 feature_maps=[2, 3, 4, 5],
                 dcn_v2_stages=[]):
60 61
        super(ResNet, self).__init__()

62 63 64
        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        assert depth in [18, 34, 50, 101, 152], \
            "depth {} not in [18, 34, 50, 101, 152]"
        assert variant in ['a', 'b', 'c', 'd'], "invalid ResNet variant"
        assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4"
        assert len(feature_maps) > 0, "need one or more feature maps"
        assert norm_type in ['bn', 'sync_bn', 'affine_channel']

        self.depth = depth
        self.freeze_at = freeze_at
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
        self.variant = variant
        self._model_type = 'ResNet'
        self.feature_maps = feature_maps
80
        self.dcn_v2_stages = dcn_v2_stages
81 82 83 84 85 86 87 88 89 90 91
        self.depth_cfg = {
            18: ([2, 2, 2, 2], self.basicblock),
            34: ([3, 4, 6, 3], self.basicblock),
            50: ([3, 4, 6, 3], self.bottleneck),
            101: ([3, 4, 23, 3], self.bottleneck),
            152: ([3, 8, 36, 3], self.bottleneck)
        }
        self.stage_filters = [64, 128, 256, 512]
        self._c1_out_chan_num = 64
        self.na = NameAdapter(self)

92 93 94 95 96 97 98 99 100 101 102 103 104
    def _conv_offset(self, input, filter_size, stride, padding, act=None, name=None):
        out_channel = filter_size * filter_size * 3
        out = fluid.layers.conv2d(input,
            num_filters=out_channel,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr=ParamAttr(initializer=Constant(0.0)),
            bias_attr=ParamAttr(initializer=Constant(0.0)),
            act=act,
            name=name)
        return out

105 106 107 108 109 110 111
    def _conv_norm(self,
                   input,
                   num_filters,
                   filter_size,
                   stride=1,
                   groups=1,
                   act=None,
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                   name=None,
                   dcn_v2=False):
        if not dcn_v2:
            conv = fluid.layers.conv2d(
                input=input,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                act=None,
                param_attr=ParamAttr(name=name + "_weights"),
                bias_attr=False,
                name=name + '.conv2d.output.1')
        else:
            # select deformable conv"
            offset_mask = self._conv_offset(
                input=input,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                act=None,
                name=name + "_conv_offset")
            offset_channel = filter_size ** 2 * 2
            mask_channel = filter_size ** 2
            offset, mask = fluid.layers.split(
                input=offset_mask,
                num_or_sections=[offset_channel, mask_channel],
                dim=1)
            mask = fluid.layers.sigmoid(mask)
            conv = fluid.layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                deformable_groups=1,
                im2col_step=1,
                param_attr=ParamAttr(name=name + "_weights"),
                bias_attr=False,
                name=name + ".conv2d.output.1")
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        bn_name = self.na.fix_conv_norm_name(name)

        norm_lr = 0. if self.freeze_norm else 1.
        norm_decay = self.norm_decay
        pattr = ParamAttr(
            name=bn_name + '_scale',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        battr = ParamAttr(
            name=bn_name + '_offset',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))

        if self.norm_type in ['bn', 'sync_bn']:
171
            global_stats = True if self.freeze_norm else False
172 173 174 175 176 177 178
            out = fluid.layers.batch_norm(
                input=conv,
                act=act,
                name=bn_name + '.output.1',
                param_attr=pattr,
                bias_attr=battr,
                moving_mean_name=bn_name + '_mean',
179 180
                moving_variance_name=bn_name + '_variance',
                use_global_stats=global_stats)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            scale = fluid.framework._get_var(pattr.name)
            bias = fluid.framework._get_var(battr.name)
        elif self.norm_type == 'affine_channel':
            scale = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=pattr,
                default_initializer=fluid.initializer.Constant(1.))
            bias = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=battr,
                default_initializer=fluid.initializer.Constant(0.))
            out = fluid.layers.affine_channel(
                x=conv, scale=scale, bias=bias, act=act)
        if self.freeze_norm:
            scale.stop_gradient = True
            bias.stop_gradient = True
        return out

    def _shortcut(self, input, ch_out, stride, is_first, name):
        max_pooling_in_short_cut = self.variant == 'd'
        ch_in = input.shape[1]
        # the naming rule is same as pretrained weight
        name = self.na.fix_shortcut_name(name)
206
        if ch_in != ch_out or stride != 1 or (self.depth < 50 and is_first):
207 208 209 210 211 212 213 214 215 216 217 218 219
            if max_pooling_in_short_cut and not is_first:
                input = fluid.layers.pool2d(
                    input=input,
                    pool_size=2,
                    pool_stride=2,
                    pool_padding=0,
                    ceil_mode=True,
                    pool_type='avg')
                return self._conv_norm(input, ch_out, 1, 1, name=name)
            return self._conv_norm(input, ch_out, 1, stride, name=name)
        else:
            return input

220
    def bottleneck(self, input, num_filters, stride, is_first, name, dcn_v2=False):
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        if self.variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        # ResNeXt
        groups = getattr(self, 'groups', 1)
        group_width = getattr(self, 'group_width', -1)
        if groups == 1:
            expand = 4
        elif (groups * group_width) == 256:
            expand = 1
        else:  # FIXME hard code for now, handles 32x4d, 64x4d and 32x8d
            num_filters = num_filters // 2
            expand = 2

        conv_name1, conv_name2, conv_name3, \
            shortcut_name = self.na.fix_bottleneck_name(name)
        conv_def = [[num_filters, 1, stride1, 'relu', 1, conv_name1],
                    [num_filters, 3, stride2, 'relu', groups, conv_name2],
                    [num_filters * expand, 1, 1, None, 1, conv_name3]]

        residual = input
244
        for i, (c, k, s, act, g, _name) in enumerate(conv_def):
245 246 247 248 249 250 251
            residual = self._conv_norm(
                input=residual,
                num_filters=c,
                filter_size=k,
                stride=s,
                act=act,
                groups=g,
252 253
                name=_name,
                dcn_v2=(i==1 and dcn_v2))
254 255 256 257 258 259 260 261 262 263 264 265 266
        short = self._shortcut(
            input,
            num_filters * expand,
            stride,
            is_first=is_first,
            name=shortcut_name)
        # Squeeze-and-Excitation
        if callable(getattr(self, '_squeeze_excitation', None)):
            residual = self._squeeze_excitation(
                input=residual, num_channels=num_filters, name='fc' + name)
        return fluid.layers.elementwise_add(
            x=short, y=residual, act='relu', name=name + ".add.output.5")

267 268
    def basicblock(self, input, num_filters, stride, is_first, name, dcn_v2=False):
        assert dcn_v2 is False, "Not implemented yet."
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        conv0 = self._conv_norm(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self._conv_norm(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self._shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

    def layer_warp(self, input, stage_num):
        """
        Args:
            input (Variable): input variable.
            stage_num (int): the stage number, should be 2, 3, 4, 5

        Returns:
            The last variable in endpoint-th stage.
        """
        assert stage_num in [2, 3, 4, 5]

        stages, block_func = self.depth_cfg[self.depth]
        count = stages[stage_num - 2]

        ch_out = self.stage_filters[stage_num - 2]
        is_first = False if stage_num != 2 else True
302
        dcn_v2 = True if stage_num in self.dcn_v2_stages else False
303 304 305 306 307
        # Make the layer name and parameter name consistent
        # with ImageNet pre-trained model
        conv = input
        for i in range(count):
            conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
308 309
            if self.depth < 50:
                is_first = True if i == 0 and stage_num == 2 else False
310 311 312 313 314
            conv = block_func(
                input=conv,
                num_filters=ch_out,
                stride=2 if i == 0 and stage_num != 2 else 1,
                is_first=is_first,
315 316
                name=conv_name,
                dcn_v2=dcn_v2)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        return conv

    def c1_stage(self, input):
        out_chan = self._c1_out_chan_num

        conv1_name = self.na.fix_c1_stage_name()

        if self.variant in ['c', 'd']:
            conv_def = [
                [out_chan // 2, 3, 2, "conv1_1"],
                [out_chan // 2, 3, 1, "conv1_2"],
                [out_chan, 3, 1, "conv1_3"],
            ]
        else:
            conv_def = [[out_chan, 7, 2, conv1_name]]

        for (c, k, s, _name) in conv_def:
            input = self._conv_norm(
                input=input,
                num_filters=c,
                filter_size=k,
                stride=s,
                act='relu',
                name=_name)

        output = fluid.layers.pool2d(
            input=input,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
        return output

    def __call__(self, input):
        assert isinstance(input, Variable)
        assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \
            "feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps)

        res_endpoints = []

        res = input
        feature_maps = self.feature_maps
        severed_head = getattr(self, 'severed_head', False)
        if not severed_head:
            res = self.c1_stage(res)
            feature_maps = range(2, max(self.feature_maps) + 1)

        for i in feature_maps:
            res = self.layer_warp(res, i)
            if i in self.feature_maps:
                res_endpoints.append(res)
            if self.freeze_at >= i:
                res.stop_gradient = True

        return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
                            for idx, feat in enumerate(res_endpoints)])


@register
@serializable
class ResNetC5(ResNet):
    __doc__ = ResNet.__doc__

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='affine_channel',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
                 feature_maps=[5]):
388 389 390
        super(ResNetC5, self).__init__(
            depth, freeze_at, norm_type, freeze_norm, norm_decay,
            variant, feature_maps)
391
        self.severed_head = True