darknet.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register

__all__ = ['DarkNet']


@register
class DarkNet(object):
    """
    DarkNet, see https://pjreddie.com/darknet/yolo/
    Args:
        depth (int): network depth, currently only darknet 53 is supported
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported
        norm_decay (float): weight decay for normalization layer weights
    """
39
    __shared__ = ['norm_type', 'weight_prefix_name']
40

41 42 43 44 45
    def __init__(self,
                 depth=53,
                 norm_type='bn',
                 norm_decay=0.,
                 weight_prefix_name=''):
46 47 48 49 50
        assert depth in [53], "unsupported depth value"
        self.depth = depth
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.depth_cfg = {53: ([1, 2, 8, 8, 4], self.basicblock)}
51
        self.prefix_name = weight_prefix_name
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    def _conv_norm(self,
                   input,
                   ch_out,
                   filter_size,
                   stride,
                   padding,
                   act='leaky',
                   name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + ".conv.weights"),
            bias_attr=False)

        bn_name = name + ".bn"
        bn_param_attr = ParamAttr(
            regularizer=L2Decay(float(self.norm_decay)),
            name=bn_name + '.scale')
        bn_bias_attr = ParamAttr(
            regularizer=L2Decay(float(self.norm_decay)),
            name=bn_name + '.offset')

        out = fluid.layers.batch_norm(
            input=conv,
            act=None,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '.mean',
            moving_variance_name=bn_name + '.var')

        # leaky relu here has `alpha` as 0.1, can not be set by
        # `act` param in fluid.layers.batch_norm above.
        if act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)

        return out

    def _downsample(self,
                    input,
                    ch_out,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    name=None):
        return self._conv_norm(
            input,
            ch_out=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            name=name)

    def basicblock(self, input, ch_out, name=None):
        conv1 = self._conv_norm(
            input,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            name=name + ".0")
        conv2 = self._conv_norm(
            conv1,
            ch_out=ch_out * 2,
            filter_size=3,
            stride=1,
            padding=1,
            name=name + ".1")
        out = fluid.layers.elementwise_add(x=input, y=conv2, act=None)
        return out

    def layer_warp(self, block_func, input, ch_out, count, name=None):
        out = block_func(input, ch_out=ch_out, name='{}.0'.format(name))
        for j in six.moves.xrange(1, count):
            out = block_func(out, ch_out=ch_out, name='{}.{}'.format(name, j))
        return out

    def __call__(self, input):
        """
        Get the backbone of DarkNet, that is output for the 5 stages.

        Args:
            input (Variable): input variable.

        Returns:
            The last variables of each stage.
        """
        stages, block_func = self.depth_cfg[self.depth]
        stages = stages[0:5]
        conv = self._conv_norm(
            input=input,
            ch_out=32,
            filter_size=3,
            stride=1,
            padding=1,
151
            name=self.prefix_name + "yolo_input")
152
        downsample_ = self._downsample(
153 154 155
            input=conv,
            ch_out=conv.shape[1] * 2,
            name=self.prefix_name + "yolo_input.downsample")
156 157 158 159 160 161 162
        blocks = []
        for i, stage in enumerate(stages):
            block = self.layer_warp(
                block_func=block_func,
                input=downsample_,
                ch_out=32 * 2**i,
                count=stage,
163
                name=self.prefix_name + "stage.{}".format(i))
164 165 166 167 168
            blocks.append(block)
            if i < len(stages) - 1:  # do not downsaple in the last stage
                downsample_ = self._downsample(
                    input=block,
                    ch_out=block.shape[1] * 2,
169
                    name=self.prefix_name + "stage.{}.downsample".format(i))
170
        return blocks