reader.py 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import six
import os
import tarfile

import numpy as np
import paddle.fluid as fluid


def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   is_label=False,
                   return_attn_bias=True,
                   return_max_len=True,
                   return_num_token=False):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
        inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst))
                                for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
            list(range(0, len(inst))) + [0] * (max_len - len(inst))
            for inst in insts
        ])
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        num_token = 0
        for inst in insts:
            num_token += len(inst)
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_train_input(insts, src_pad_idx, trg_pad_idx, n_head):
    """
    Put all padded data needed by training into a list.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    src_word = src_word.reshape(-1, src_max_len)
    src_pos = src_pos.reshape(-1, src_max_len)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
    trg_word = trg_word.reshape(-1, trg_max_len)
    trg_pos = trg_pos.reshape(-1, trg_max_len)

    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")

    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
        return_num_token=True)
    lbl_word = lbl_word.reshape(-1, 1)
    lbl_weight = lbl_weight.reshape(-1, 1)

    data_inputs = [
        src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
        trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
    ]

    return data_inputs


def prepare_infer_input(insts, src_pad_idx, bos_idx, n_head, place):
    """
    Put all padded data needed by beam search decoder into a list.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    # start tokens
    trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64")
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, 1, 1]).astype("float32")
    trg_word = trg_word.reshape(-1, 1)
    src_word = src_word.reshape(-1, src_max_len)
    src_pos = src_pos.reshape(-1, src_max_len)

    data_inputs = [
        src_word, src_pos, src_slf_attn_bias, trg_word, trg_src_attn_bias
    ]
    return data_inputs


class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


class Converter(object):
    def __init__(self, vocab, beg, end, unk, delimiter, add_beg):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter
        self._add_beg = add_beg

    def __call__(self, sentence):
        return ([self._beg] if self._add_beg else []) + [
            self._vocab.get(w, self._unk)
            for w in sentence.split(self._delimiter)
        ] + [self._end]


class ComposedConverter(object):
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


class SentenceBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


class TokenBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


class SampleInfo(object):
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


class MinMaxFilter(object):
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


class DataProcessor(object):
    """
    The data reader loads all data from files and produces batches of data
    in the way corresponding to settings.

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
    train_data = DataProcessor(
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
        device_count=8,
        n_head=8,
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
        clip_last_batch=False).data_generator(phase='train')
    ```

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
    :type device_count: int
    :param device_count: The number of devices. The actual batch size is
        determined by both batch_size and device_count.
    :type n_head: int
    :param n_head: The number of head used in multi-head attention. Actually,
        this is not a reader related argument, but is used for input data.
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
    :param only_src: Whether each line is a source and target sentence
        pair or only has the source sentence.
    :type only_src: bool
    :param seed: The seed for random.
    :type seed: int
    """
    def __init__(self,
                 src_vocab_fpath,
                 trg_vocab_fpath,
                 fpattern,
                 batch_size,
                 device_count,
                 n_head,
                 pool_size,
                 sort_type=SortType.GLOBAL,
                 clip_last_batch=False,
                 tar_fname=None,
                 min_length=0,
                 max_length=100,
                 shuffle=True,
                 shuffle_batch=False,
                 use_token_batch=False,
                 field_delimiter="\t",
                 token_delimiter=" ",
                 start_mark="<s>",
                 end_mark="<e>",
                 unk_mark="<unk>",
                 only_src=False,
                 seed=0):
        # convert str to bytes, and use byte data
        field_delimiter = field_delimiter.encode("utf8")
        token_delimiter = token_delimiter.encode("utf8")
        start_mark = start_mark.encode("utf8")
        end_mark = end_mark.encode("utf8")
        unk_mark = unk_mark.encode("utf8")
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._trg_vocab = self.load_dict(trg_vocab_fpath)
        self._bos_idx = self._src_vocab[start_mark]
        self._eos_idx = self._src_vocab[end_mark]
        self._unk_idx = self._src_vocab[unk_mark]
        self._only_src = only_src
        self._pool_size = pool_size
        self._batch_size = batch_size
        self._device_count = device_count
        self._n_head = n_head
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
        self.load_src_trg_ids(fpattern, tar_fname)
        self._random = np.random
        self._random.seed(seed)

    def load_src_trg_ids(self, fpattern, tar_fname):
        converters = [
            Converter(vocab=self._src_vocab,
                      beg=self._bos_idx,
                      end=self._eos_idx,
                      unk=self._unk_idx,
                      delimiter=self._token_delimiter,
                      add_beg=False)
        ]
        if not self._only_src:
            converters.append(
                Converter(vocab=self._trg_vocab,
                          beg=self._bos_idx,
                          end=self._eos_idx,
                          unk=self._unk_idx,
                          delimiter=self._token_delimiter,
                          add_beg=True))

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
            if not self._only_src:
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))

    def _load_lines(self, fpattern, tar_fname):
        fpaths = glob.glob(fpattern)
        assert len(fpaths) > 0, "no matching file to the provided data path"

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

            f = tarfile.open(fpaths[0], "rb")
            for line in f.extractfile(tar_fname):
                fields = line.strip(b"\n").split(self._field_delimiter)
                if (not self._only_src
                        and len(fields) == 2) or (self._only_src
                                                  and len(fields) == 1):
                    yield fields
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

                with open(fpath, "rb") as f:
                    for line in f:
                        fields = line.strip(b"\n").split(self._field_delimiter)
                        if (not self._only_src
                                and len(fields) == 2) or (self._only_src
                                                          and len(fields) == 1):
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
        with open(dict_path, "rb") as fdict:
            for idx, line in enumerate(fdict):
                if reverse:
                    word_dict[idx] = line.strip(b"\n")
                else:
                    word_dict[line.strip(b"\n")] = idx
        return word_dict

    def batch_generator(self, batch_size, use_token_batch):
        def __impl__():
            # global sort or global shuffle
            if self._sort_type == SortType.GLOBAL:
                infos = sorted(self._sample_infos, key=lambda x: x.max_len)
            else:
                if self._shuffle:
                    infos = self._sample_infos
                    self._random.shuffle(infos)
                else:
                    infos = self._sample_infos

                if self._sort_type == SortType.POOL:
                    reverse = True
                    for i in range(0, len(infos), self._pool_size):
                        # to avoid placing short next to long sentences
                        reverse = not reverse
                        infos[i:i + self._pool_size] = sorted(
                            infos[i:i + self._pool_size],
                            key=lambda x: x.max_len,
                            reverse=reverse)

            # concat batch
            batches = []
            batch_creator = TokenBatchCreator(
                batch_size) if use_token_batch else SentenceBatchCreator(
                    batch_size)
            batch_creator = MinMaxFilter(self._max_length, self._min_length,
                                         batch_creator)

            for info in infos:
                batch = batch_creator.append(info)
                if batch is not None:
                    batches.append(batch)

            if not self._clip_last_batch and len(batch_creator.batch) != 0:
                batches.append(batch_creator.batch)

            if self._shuffle_batch:
                self._random.shuffle(batches)

            for batch in batches:
                batch_ids = [info.i for info in batch]

                if self._only_src:
                    yield [[self._src_seq_ids[idx]] for idx in batch_ids]
                else:
                    yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1],
                            self._trg_seq_ids[idx][1:]) for idx in batch_ids]

        return __impl__

    @staticmethod
    def stack(data_reader, count, clip_last=True):
        def __impl__():
            res = []
            for item in data_reader():
                res.append(item)
                if len(res) == count:
                    yield res
                    res = []
            if len(res) == count:
                yield res
            elif not clip_last:
                data = []
                for item in res:
                    data += item
                if len(data) > count:
                    inst_num_per_part = len(data) // count
                    yield [
                        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                        for i in range(count)
                    ]

        return __impl__

    @staticmethod
    def split(data_reader, count):
        def __impl__():
            for item in data_reader():
                inst_num_per_part = len(item) // count
                for i in range(count):
                    yield item[inst_num_per_part * i:inst_num_per_part *
                               (i + 1)]

        return __impl__

    def data_generator(self, phase, place=None):
        # Any token included in dict can be used to pad, since the paddings' loss
        # will be masked out by weights and make no effect on parameter gradients.
        src_pad_idx = trg_pad_idx = self._eos_idx
        bos_idx = self._bos_idx
        n_head = self._n_head
        data_reader = self.batch_generator(
            self._batch_size *
            (1 if self._use_token_batch else self._device_count),
            self._use_token_batch)
        if not self._use_token_batch:
            # to make data on each device have similar token number
            data_reader = self.split(data_reader, self._device_count)

        def __for_train__():
            for data in data_reader():
                data_inputs = prepare_train_input(data, src_pad_idx,
                                                  trg_pad_idx, n_head)
                yield data_inputs

        def __for_predict__():
            for data in data_reader():
                data_inputs = prepare_infer_input(data, src_pad_idx, bos_idx,
                                                  n_head, place)
                yield data_inputs

        return __for_train__ if phase == "train" else __for_predict__

    def get_vocab_summary(self):
        return len(self._src_vocab), len(
            self._trg_vocab), self._bos_idx, self._eos_idx, self._unk_idx