reader.py 7.1 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import image_util
from paddle.utils.image_util import *
import random
from PIL import Image
import numpy as np
import xml.etree.ElementTree
import os


class Settings(object):
    def __init__(self, data_dir, label_file, resize_h, resize_w, mean_value):
        self._data_dir = data_dir
        self._label_list = []
        label_fpath = os.path.join(data_dir, label_file)
        for line in open(label_fpath):
            self._label_list.append(line.strip())

        self._resize_height = resize_h
        self._resize_width = resize_w
        self._img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype(
            'float32')

    @property
    def data_dir(self):
        return self._data_dir

    @property
    def label_list(self):
        return self._label_list

    @property
    def resize_h(self):
        return self._resize_height

    @property
    def resize_w(self):
        return self._resize_width

    @property
    def img_mean(self):
        return self._img_mean


def _reader_creator(settings, file_list, mode, shuffle):
    def reader():
        with open(file_list) as flist:
            lines = [line.strip() for line in flist]
            if shuffle:
                random.shuffle(lines)
            for line in lines:
                if mode == 'train' or mode == 'test':
                    img_path, label_path = line.split()
                    img_path = os.path.join(settings.data_dir, img_path)
                    label_path = os.path.join(settings.data_dir, label_path)
                elif mode == 'infer':
                    img_path = os.path.join(settings.data_dir, line)

                img = Image.open(img_path)
                img_width, img_height = img.size
                img = np.array(img)

                # layout: label | xmin | ymin | xmax | ymax | difficult
                if mode == 'train' or mode == 'test':
                    bbox_labels = []
                    root = xml.etree.ElementTree.parse(label_path).getroot()
                    for object in root.findall('object'):
                        bbox_sample = []
                        # start from 1
                        bbox_sample.append(
                            float(
                                settings.label_list.index(
                                    object.find('name').text)))
                        bbox = object.find('bndbox')
                        difficult = float(object.find('difficult').text)
                        bbox_sample.append(
                            float(bbox.find('xmin').text) / img_width)
                        bbox_sample.append(
                            float(bbox.find('ymin').text) / img_height)
                        bbox_sample.append(
                            float(bbox.find('xmax').text) / img_width)
                        bbox_sample.append(
                            float(bbox.find('ymax').text) / img_height)
                        bbox_sample.append(difficult)
                        bbox_labels.append(bbox_sample)

                    sample_labels = bbox_labels
                    if mode == 'train':
                        batch_sampler = []
                        # hard-code here
                        batch_sampler.append(
                            image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9,
                                               0.0))
                        batch_sampler.append(
                            image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0,
                                               1.0))
                        """ random crop """
                        sampled_bbox = image_util.generate_batch_samples(
                            batch_sampler, bbox_labels, img_width, img_height)

                        if len(sampled_bbox) > 0:
                            idx = int(random.uniform(0, len(sampled_bbox)))
                            img, sample_labels = image_util.crop_image(
                                img, bbox_labels, sampled_bbox[idx], img_width,
                                img_height)

                img = Image.fromarray(img)
                img = img.resize((settings.resize_w, settings.resize_h),
                                 Image.ANTIALIAS)
                img = np.array(img)

                if mode == 'train':
                    mirror = int(random.uniform(0, 2))
                    if mirror == 1:
                        img = img[:, ::-1, :]
                        for i in xrange(len(sample_labels)):
                            tmp = sample_labels[i][1]
                            sample_labels[i][1] = 1 - sample_labels[i][3]
                            sample_labels[i][3] = 1 - tmp

                if len(img.shape) == 3:
                    img = np.swapaxes(img, 1, 2)
                    img = np.swapaxes(img, 1, 0)

                img = img.astype('float32')
                img -= settings.img_mean
                img = img.flatten()

                sample_labels = np.array(sample_labels)
                if mode == 'train' or mode == 'test':
                    if mode == 'train' and len(sample_labels) == 0: continue
                    yield img.astype(
                        'float32'
D
dangqingqing 已提交
162 163
                    ), sample_labels[:, 1:5], sample_labels[:, 0].astype(
                        'int32'), sample_labels[:, 5].astype('int32')
G
gaoyuan 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                elif mode == 'infer':
                    yield img.astype('float32')

    return reader


def train(settings, file_list, shuffle=True):
    return _reader_creator(settings, file_list, 'train', shuffle)


def test(settings, file_list):
    return _reader_creator(settings, file_list, 'test', False)


def infer(settings, file_list):
    return _reader_creator(settings, file_list, 'infer', False)