app.py 15.2 KB
Newer Older
小小的香辛料 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
#-*- coding: UTF-8 -*-
# Copyright 2022 The Impira Team and the HuggingFace Team.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import base64
from io import BytesIO
from PIL import Image
import traceback

import requests
import numpy as np
import gradio as gr
import pdf2image
import fitz
import cv2

fitz_tools = fitz.Tools()


def pdf2img(stream, pagenos, dpi=300, thread_count=3, height=1600):
    images = []
    cimages = pdf2image.convert_from_bytes(
        stream, dpi=dpi, thread_count=thread_count, first_page=pagenos[0] + 1, last_page=pagenos[-1] + 1,
        size=height)
    for _image in cimages:
        image = np.array(_image)
        image = image[..., ::-1]
        images.append(image)
    return images


class PdfReader(object):
    """pdf reader"""
    def __init__(self,
                 stream: bytes,
                 image_height: int = 1600):
        self.stream = stream
        self._image_height = image_height
        self._dpi = 200
        self._inpdf = self.load_file(stream)

    @staticmethod
    def load_file(stream):
        """load document"""
        try:
            inpdf = fitz.Document(stream=stream, filetype="pdf")
        except Exception as e:
            print(f"[PDF_READER]-[Failed to load the file]-[{repr(e)}]")
        return inpdf

    @staticmethod
    def _convert_page_obj_to_image(page_obj, image_height: int = None):
        """fitz convert pdf to image

        Args:
            page_obj ([type]): [description]
            ratio ([type]): [description]

        Returns:
            [type]: [description]
        """
        if image_height:
            _, page_height = page_obj.rect.x1 - \
                page_obj.rect.x0, page_obj.rect.y1 - page_obj.rect.y0
            ratio = image_height / page_height
        else:
            ratio = 1.0
        trans = fitz.Matrix(ratio, ratio)
        pixmap = page_obj.get_pixmap(matrix=trans, alpha=False)
        image = cv2.imdecode(np.frombuffer(pixmap.tobytes(), np.uint8), -1)
        fitz_tools.store_shrink(100)
        return image

    def get_page_image(self,
                       pageno):
        """get page image

        Args:
            pageno ([type]): [description]

        Returns:
            [type]: [description]
        """
        try:
            page_obj = self._inpdf[pageno]
            return self._convert_page_obj_to_image(page_obj, self._image_height)
        except Exception as e:
            print(f"[Failed to convert the PDF to images]-[{repr(e)}]")
        try:
            return pdf2img(stream=self.stream,
                           pagenos=[pageno],
                           height=self._image_height,
                           dpi=self._dpi)[0]
        except Exception as e:
            print(f"[Failed to convert the PDF to images]-[{repr(e)}]")
        return None


examples = [
    [
        "budget_form.png",
        "What is the total actual and/or obligated expenses of ECG Center?"
    ],
    [
        "poster.png",
        "Which gift idea needs a printer?"
    ],
        [
        "receipt.png",
        "เบอร์โทรร้านอะไรคะ?"
    ],
    [
        "medical_bill_2.jpg",
        "患者さんは何でお金を払いますか。"
    ],
    [
        "resume.png",
        "五百丁本次想要担任的是什么职位?",
    ],
    [
        "custom_declaration_form.png",
        "在哪个口岸进口?"
    ],
    [
        "invoice.jpg",
        "发票号码是多少?",
    ],
]

prompt_files = {
    "发票号码是多少?": "invoice.jpg",
    "五百丁本次想要担任的是什么职位?": "resume.png",
    "在哪个口岸进口?": "custom_declaration_form.png",
    "What is the total actual and/or obligated expenses of ECG Center?": "budget_form.png",
    "Which gift idea needs a printer?": "poster.png",
    "患者さんは何でお金を払いますか。": "medical_bill_2.jpg",
    "เบอร์โทรร้านอะไรคะ?": "receipt.png",
}

lang_map = {
    "invoice.jpg": "ch",
    "resume.png": "ch",
    "custom_declaration_form.png": "ch",
    "medical_bill_1.png": "ch",
    "budget_form.png": "en",
    "website_design_guide.jpeg": "en",
    "poster.png": "en",
    "medical_bill_2.jpg": "ch",
    "receipt.png": "en"
}


def load_document(path):
    if path.startswith("http://") or path.startswith("https://"):
        resp = requests.get(path, allow_redirects=True, stream=True)
        b = resp.raw
    else:
        b = open(path, "rb")

    if path.endswith(".pdf"):
        images_list = []
        pdfreader = PdfReader(stream=b.read())
        for p_no in range(0, pdfreader._inpdf.page_count):
            img_np = pdfreader.get_page_image(pageno=p_no)
            images_list.append(img_np)
    else:
        image = Image.open(b)
        images_list = [np.array(image.convert("RGB"))]
    return images_list

def process_path(path):
    error = None
    if path:
        try:
            images_list = load_document(path)
            return (
                path,
                gr.update(visible=True, value=images_list),
                gr.update(visible=True),
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                None,
            )
        except Exception as e:
            traceback.print_exc()
            error = str(e)
    return (
        None,
        gr.update(visible=False, value=None),
        gr.update(visible=False),
        gr.update(visible=False, value=None),
        gr.update(visible=False, value=None),
        gr.update(visible=True, value=error) if error is not None else None,
        None,
    )


def process_upload(file):
    if file:
        return process_path(file.name)
    else:
        return (
            None,
            gr.update(visible=False, value=None),
            gr.update(visible=False),
            gr.update(visible=False, value=None),
            gr.update(visible=False, value=None),
            None,
        )


def np2base64(image_np):
    image = cv2.imencode('.jpg', image_np)[1]
    base64_str = str(base64.b64encode(image))[2:-1]
    return base64_str


def get_base64(path):
    if path.startswith("http://") or path.startswith("https://"):
        resp = requests.get(path, allow_redirects=True, stream=True)
        b = resp.raw
    else:
        b = open(path, "rb")

    if path.endswith(".pdf"):
        images_list = []
        pdfreader = PdfReader(stream=b.read())
        for p_no in range(0, min(pdfreader._inpdf.page_count, 1)):
            img_np = pdfreader.get_page_image(pageno=p_no)
            images_list.append(img_np)
        base64_str = np2base64(images_list[0])
    else:
        base64_str = base64.b64encode(b.read()).decode()
    return base64_str


def process_prompt(prompt, document, lang="ch"):
    if not prompt:
        prompt = "What is the total actual and/or obligated expenses of ECG Center?"
    if document is None:
        return None, None, None

    access_token = os.environ['token']

    url = f"https://aip.baidubce.com/rpc/2.0/nlp-itec/poc/docprompt?access_token={access_token}"
    
    base64_str = get_base64(document)

    r = requests.post(url, json={"doc": base64_str, "prompt": [prompt], "lang": lang})
    response = r.json()
    
    predictions = response['result']
    img_list = response['image']
    pages = [Image.open(BytesIO(base64.b64decode(img))) for img in img_list]

    text_value = predictions[0]['result'][0]['value']

    return (
        gr.update(visible=True, value=pages),
        gr.update(visible=True, value=predictions),
        gr.update(
            visible=True,
            value=text_value,
        ),
    )


def load_example_document(img, prompt):
    if img is not None:
        document = prompt_files[prompt]
        lang = lang_map[document]
        preview, answer, answer_text = process_prompt(prompt, document, lang)
        return document, prompt, preview, gr.update(visible=True), answer, answer_text
    else:
        return None, None, None, gr.update(visible=False), None, None


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


CSS = """
#prompt input {
    font-size: 16px;
}
#url-textbox {
    padding: 0 !important;
}
#short-upload-box .w-full {
    min-height: 10rem !important;
}
/* I think something like this can be used to re-shape
 * the table
 */
/*
.gr-samples-table tr {
    display: inline;
}
.gr-samples-table .p-2 {
    width: 100px;
}
*/
#select-a-file {
    width: 100%;
}
#file-clear {
    padding-top: 2px !important;
    padding-bottom: 2px !important;
    padding-left: 8px !important;
    padding-right: 8px !important;
	margin-top: 10px;
}
.gradio-container .gr-button-primary {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700;
}
.gradio-container.dark button#submit-button {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700
}
table.gr-samples-table tr td {
    border: none;
    outline: none;
}
table.gr-samples-table tr td:first-of-type {
    width: 0%;
}
div#short-upload-box div.absolute {
    display: none !important;
}
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
    gap: 0px 2%;
}
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
    gap: 0px;
}
gradio-app h2, .gradio-app h2 {
    padding-top: 10px;
}
#answer {
    overflow-y: scroll;
    color: white;
    background: #666;
    border-color: #666;
    font-size: 20px;
    font-weight: bold;
}
#answer span {
    color: white;
}
#answer textarea {
    color:white;
    background: #777;
    border-color: #777;
    font-size: 18px;
}
#url-error input {
    color: red;
}
"""

with gr.Blocks(css=CSS) as demo:
    gr.HTML(read_content("header.html"))
    gr.Markdown(
        "DocPrompt🔖 is a Document Prompt Engine using ERNIE-Layout as the backbone model."
        "The engine is powered by BAIDU WenXin Document Intelligence Team "
        "and has the ability for multilingual documents information extraction and question ansering. "
        "For more details, please visit the [Github](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout)."
        "ERNIE-Layout paper please refer to [ERNIE-Layout](https://paperswithcode.com/paper/ernie-layout-layout-knowledge-enhanced-pre)"
    )

    document = gr.Variable()
    example_prompt = gr.Textbox(visible=False)
    example_image = gr.Image(visible=False)
    with gr.Row(equal_height=True):
        with gr.Column():
            with gr.Row():
                gr.Markdown("## 1. Select a file", elem_id="select-a-file")
                img_clear_button = gr.Button(
                    "Clear", variant="secondary", elem_id="file-clear", visible=False
                )
            image = gr.Gallery(visible=False)
            with gr.Row(equal_height=True):
                with gr.Column():
                    with gr.Row():
                        url = gr.Textbox(
                            show_label=False,
                            placeholder="URL",
                            lines=1,
                            max_lines=1,
                            elem_id="url-textbox",
                        )
                        submit = gr.Button("Get")
                    url_error = gr.Textbox(
                        visible=False,
                        elem_id="url-error",
                        max_lines=1,
                        interactive=False,
                        label="Error",
                    )
            gr.Markdown("— or —")
            upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
            gr.Examples(
                examples=examples,
                inputs=[example_image, example_prompt],
            )

        with gr.Column() as col:
            gr.Markdown("## 2. Make a request")
            prompt = gr.Textbox(
                label="Prompt (No restrictions on the setting of prompt. You can type any prompt.)",
                placeholder="e.g. What is the total actual and/or obligated expenses of ECG Center?",
                lines=1,
                max_lines=1,
            )
            ocr_lang = gr.Radio(
                choices=["ch", "en"],
                value="en",
                label="Select OCR Language (Please choose ch for Chinese images.)",
            )

            with gr.Row():
                clear_button = gr.Button("Clear", variant="secondary")
                submit_button = gr.Button(
                    "Submit", variant="primary", elem_id="submit-button"
                )
            with gr.Column():
                output_text = gr.Textbox(
                    label="Top Answer", visible=False, elem_id="answer"
                )
                output = gr.JSON(label="Output", visible=False)

    for cb in [img_clear_button, clear_button]:
        cb.click(
            lambda _: (
                gr.update(visible=False, value=None),
                None,
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                gr.update(visible=False),
                None,
                None,
                None,
                gr.update(visible=False, value=None),
                None,
            ),
            inputs=clear_button,
            outputs=[
                image,
                document,
                output,
                output_text,
                img_clear_button,
                example_image,
                upload,
                url,
                url_error,
                prompt,
            ],
        )

    upload.change(
        fn=process_upload,
        inputs=[upload],
        outputs=[document, image, img_clear_button, output, output_text, url_error],
    )
    submit.click(
        fn=process_path,
        inputs=[url],
        outputs=[document, image, img_clear_button, output, output_text, url_error],
    )

    prompt.submit(
        fn=process_prompt,
        inputs=[prompt, document, ocr_lang],
        outputs=[image, output, output_text],
    )

    submit_button.click(
        fn=process_prompt,
        inputs=[prompt, document, ocr_lang],
        outputs=[image, output, output_text],
    )

    example_image.change(
        fn=load_example_document,
        inputs=[example_image, example_prompt],
        outputs=[document, prompt, image, img_clear_button, output, output_text],
    )

    gr.Markdown("[![Stargazers repo roster for @PaddlePaddle/PaddleNLP](https://reporoster.com/stars/PaddlePaddle/PaddleNLP)](https://github.com/PaddlePaddle/PaddleNLP)")
    gr.HTML(read_content("footer.html"))


if __name__ == "__main__":
    demo.launch(enable_queue=False)