README.md 5.2 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
# 数据使用说明
Paddle视频模型库同时涵盖了youtube8m和kinetics两种数据集。其中Attention Cluster、LSTM和NeXtVLAD使用2nd-Youtube-8M数据集,stNet和TSN使用kinetics400数据集。

## Youtube-8M数据集
这里我们用到的是YouTube-8M 2018年更新之后的数据集。使用官方数据集,并将tfrecord文件转化为pickle文件以便paddle使用。Youtube-8M数据集官方提供了frame-level和video-level的特征,我们这里只需使用到frame-level的特征。

### 数据下载
请使用Youtube-8M官方链接分别下载[训练集](http://us.data.yt8m.org/2/frame/train/index.html)[验证集](http://us.data.yt8m.org/2/frame/validate/index.html)。每个链接里各提供了3844个文件的下载地址,用户也可以使用官方提供的[下载脚本](https://research.google.com/youtube8m/download.html)下载数据。数据下载完成后,将会得到3844个训练数据文件和3844个验证数据文件(tfrecord格式)。
假设存放当前代码库的主目录为: Code_Base_Root,进入dataset/youtube8m目录

          cd dataset/youtube8m

在youtube8m下新建目录tf/train和tf/val

                    mkdir tf && cd tf

                    mkdir train && mkdir val

并分别将下载的train和validate数据存放在其中。

### 数据格式转化
为了适用于Fluid训练,我们离线将下载好的tfrecord文件格式转成了pickle格式,转换脚本请使用[dataset/youtube8m/tf2pkl.py](./dataset/youtube8m/tf2pkl.py)
在dataset/youtube8m 目录下新建目录pkl/train和pkl/val

                   cd dataset/youtube8m

                   mkdir pkl && cd pkl

                   mkdir train && mkdir val


转化文件格式(tfrecord -> pkl),进入dataset/youtube8m目录,运行脚本

                   python tf2pkl.py ./tf/train ./pkl/train



                   python tf2pkl.py ./tf/val ./pkl/val

分别将train和validate数据集转化为pkl文件。tf2pkl.py文件运行时需要两个参数,分别是数据源tf文件存放路径和转化后的pkl文件存放路径。
备注:由于tfrecord文件的读取需要用到tensorflow,用户要先安装tensorflow,或者在安装有tensorflow的环境中转化完数据,再拷贝到dataset/youtube8m/pkl目录下。为了避免和paddle环境冲突,我们建议先在其他地方转化完成再将数据拷贝过来。

### 生成文件列表
进入dataset/youtube8m目录

             ls ${Code_Base_Root}/dataset/youtube8m/pkl/train/* > train.list

             ls ${Code_Base_Root}/dataset/youtube8m/pkl/val/* > val.list

在dataset/youtube8m目录下将生成两个文件,train.list和val.list,每一行分别保存了一个pkl文件的绝对路径。

## Kinetics数据集
Kinetics数据集是DeepMind公开的大规模视频动作识别数据集,有Kinetics400与Kinetics600两个版本。这里我们使用Kinetics400数据集,具体的数据预处理过程如下。

### mp4视频下载
在Code_Base_Root目录下创建文件夹

                cd ${Code_Base_Root}/dataset && mkdir kinetics

                cd kinetics && mkdir data_k400 && cd data_k400

                mkdir train_mp4 && mkdir val_mp4

ActivityNet官方提供了Kinetics的下载工具,具体参考其[官方repo ](https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics)即可下载Kinetics400的mp4视频集合。将kinetics400的训练与验证集合分别下载到dataset/kinetics/data_k400/train_mp4与dataset/kinetics/data_k400/val_mp4。

### mp4文件预处理
为提高数据读取速度,我们提前将mp4文件解帧并打pickle包,dataloader从视频的pkl文件中读取数据(该方法耗费更多存储空间)。pkl文件里打包的内容为(video-id,[frame1, frame2,...,frameN],label)。
在 dataset/kinetics/data_k400目录下创建目录train_pkl和val_pkl

                 cd ${Code_Base_Root}/dataset/kinetics/data_k400

                 mkdir train_pkl && mkdir val_pkl

进入${Code_Base_Root}/dataset/kinetics目录,使用video2pkl.py脚本进行数据转化。首先需要下载[train](https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics/data/kinetics-400_train.csv)[validation](https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics/data/kinetics-400_val.csv)数据集的文件列表。

执行如下程序:

               python video2pkl.py kinetics-400_train.csv $Source_dir $Target_dir  8 #以8个进程为例

对于train数据,

               Source_dir = ${Code_Base_Root}/dataset/kinetics/data_k400/train_mp4

               Target_dir = ${Code_Base_Root}/dataset/kinetics/data_k400/train_pkl

对于val数据,

               Source_dir = ${Code_Base_Root}/dataset/kinetics/data_k400/val_mp4

               Target_dir = ${Code_Base_Root}/dataset/kinetics/data_k400/val_pkl

这样即可将mp4文件解码并保存为pkl文件。

### 生成训练和验证集合list
              cd ${Code_Base_Root}/dataset/kinetics
              ls ${Code_Base_Root}/dataset/kinetics/data_k400/train_pkl /* > train.list
              ls ${Code_Base_Root}/dataset/kinetics/data_k400/val_pkl /* > val.list
即可生成相应的文件列表,train.list和val.list的每一行表示一个pkl文件的绝对路径。