main.py 11.7 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
import os
import random
import time
import numpy as np
from functools import partial

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.distributed as dist
from paddle.io import DataLoader, DistributedBatchSampler, BatchSampler
from paddle.optimizer.lr import LambdaDecay
from paddle.optimizer import AdamW
from paddle.metric import Accuracy

from paddlenlp.datasets import MapDatasetWrapper
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import BertTokenizer, BertForSequenceClassification, BertForTokenClassification

from args import parse_args, set_default_args
import data
import metric

TASK_CLASSES = {
25 26 27 28
    'udc': (data.UDCv1, metric.RecallAtK),
    'dstc2': (data.DSTC2, metric.JointAccuracy),
    'atis_slot': (data.ATIS_DSF, metric.F1Score),
    'atis_intent': (data.ATIS_DID, Accuracy),
Z
Zeyu Chen 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    'mrda': (data.MRDA, Accuracy),
    'swda': (data.SwDA, Accuracy)
}


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


def load_ckpt(args, model, optimizer=None):
    if args.init_from_ckpt:
        params_state_dict = paddle.load(args.init_from_ckpt + '.pdparams')
        model.set_state_dict(params_state_dict)
        if optimizer:
            opt_state_dict = paddle.load(args.init_from_ckpt + '.pdopt')
            optimizer.set_state_dict(opt_state_dict)
        print('Loaded checkpoint from %s' % args.init_from_ckpt)


def save_ckpt(model, optimizer, output_dir, name):
    params_path = os.path.join(output_dir, '{}.pdparams'.format(name))
    opt_path = os.path.join(output_dir, '{}.pdopt'.format(name))
    paddle.save(model.state_dict(), params_path)
    paddle.save(optimizer.state_dict(), opt_path)


def compute_lr_factor(current_step, warmup_steps, max_train_steps):
    if current_step < warmup_steps:
        factor = float(current_step) / warmup_steps
    else:
        factor = 1 - float(current_step) / max_train_steps
    return factor


class DGULossFunction(nn.Layer):
    def __init__(self, task_name):
        super(DGULossFunction, self).__init__()

        self.task_name = task_name
        self.loss_fn = self.get_loss_fn()

    def get_loss_fn(self):
73 74 75
        if self.task_name in [
                'udc', 'atis_slot', 'atis_intent', 'mrda', 'swda'
        ]:
Z
Zeyu Chen 已提交
76
            return F.softmax_with_cross_entropy
77
        elif self.task_name == 'dstc2':
Z
Zeyu Chen 已提交
78 79 80
            return nn.BCEWithLogitsLoss(reduction='sum')

    def forward(self, logits, labels):
81
        if self.task_name in ['udc', 'atis_intent', 'mrda', 'swda']:
Z
Zeyu Chen 已提交
82 83
            loss = self.loss_fn(logits, labels)
            loss = paddle.mean(loss)
84
        elif self.task_name == 'dstc2':
Z
Zeyu Chen 已提交
85
            loss = self.loss_fn(logits, paddle.cast(labels, dtype=logits.dtype))
86
        elif self.task_name == 'atis_slot':
Z
Zeyu Chen 已提交
87 88 89 90 91 92 93
            labels = paddle.unsqueeze(labels, axis=-1)
            loss = self.loss_fn(logits, labels)
            loss = paddle.mean(loss)
        return loss


def print_logs(args, step, logits, labels, loss, total_time, metric):
94 95
    if args.task_name in ['udc', 'atis_intent', 'mrda', 'swda']:
        if args.task_name == 'udc':
Z
Zeyu Chen 已提交
96 97 98 99 100 101 102
            metric = Accuracy()
        metric.reset()
        correct = metric.compute(logits, labels)
        metric.update(correct)
        acc = metric.accumulate()
        print('step %d - loss: %.4f - acc: %.4f - %.3fs/step' %
              (step, loss, acc, total_time / args.logging_steps))
103
    elif args.task_name == 'dstc2':
Z
Zeyu Chen 已提交
104 105 106 107 108
        metric.reset()
        metric.update(logits, labels)
        joint_acc = metric.accumulate()
        print('step %d - loss: %.4f - joint_acc: %.4f - %.3fs/step' %
              (step, loss, joint_acc, total_time / args.logging_steps))
109
    elif args.task_name == 'atis_slot':
Z
Zeyu Chen 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        metric.reset()
        metric.update(logits, labels)
        f1_micro = metric.accumulate()
        print('step %d - loss: %.4f - f1_micro: %.4f - %.3fs/step' %
              (step, loss, f1_micro, total_time / args.logging_steps))


def train(args, model, train_data_loader, dev_data_loader, metric, rank):
    num_examples = len(train_data_loader) * args.batch_size * args.n_gpu
    max_train_steps = args.epochs * len(train_data_loader)
    warmup_steps = int(max_train_steps * args.warmup_proportion)
    if rank == 0:
        print("Num train examples: %d" % num_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)
    factor_fn = partial(
        compute_lr_factor,
        warmup_steps=warmup_steps,
        max_train_steps=max_train_steps)
    lr_scheduler = LambdaDecay(args.learning_rate, factor_fn)
    optimizer = AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            params.name for params in model.parameters()
            if not any(nd in params.name for nd in ['bias', 'norm'])],
        grad_clip=nn.ClipGradByGlobalNorm(args.max_grad_norm)
    )
    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])
    loss_fn = DGULossFunction(args.task_name)

    load_ckpt(args, model, optimizer)

    step = 0
    best_metric = 0.0
    total_time = 0.0
    for epoch in range(args.epochs):
        if rank == 0:
            print('\nEpoch %d/%d' % (epoch + 1, args.epochs))
        batch_start_time = time.time()
        for batch in train_data_loader:
            step += 1
            input_ids, segment_ids, labels = batch
            logits = model(input_ids, segment_ids)
            loss = loss_fn(logits, labels)
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.clear_gradients()
            total_time += (time.time() - batch_start_time)
            if rank == 0:
                if step % args.logging_steps == 0:
                    print_logs(args, step, logits, labels, loss, total_time,
                               metric)
                    total_time = 0.0
                if step % args.save_steps == 0 or step == max_train_steps:
                    save_ckpt(model, optimizer, args.output_dir, step)
                    if args.do_eval:
                        print('\nEval begin...')
                        metric_out = evaluation(args, model, dev_data_loader,
                                                metric)
                        if metric_out > best_metric:
                            best_metric = metric_out
                            save_ckpt(model, optimizer, args.output_dir, 'best')
                            print('Best model, step: %d\n' % step)
            batch_start_time = time.time()


186
@paddle.no_grad()
Z
Zeyu Chen 已提交
187 188 189 190 191 192
def evaluation(args, model, data_loader, metric):
    model.eval()
    metric.reset()
    for batch in data_loader:
        input_ids, segment_ids, labels = batch
        logits = model(input_ids, segment_ids)
193
        if args.task_name in ['atis_intent', 'mrda', 'swda']:
Z
Zeyu Chen 已提交
194 195 196 197 198 199 200
            correct = metric.compute(logits, labels)
            metric.update(correct)
        else:
            metric.update(logits, labels)
    model.train()
    metric_out = metric.accumulate()
    print('Total samples: %d' % (len(data_loader) * args.test_batch_size))
201
    if args.task_name == 'udc':
Z
Zeyu Chen 已提交
202 203 204
        print('R1@10: %.4f - R2@10: %.4f - R5@10: %.4f\n' %
              (metric_out[0], metric_out[1], metric_out[2]))
        return metric_out[0]
205
    elif args.task_name == 'dstc2':
Z
Zeyu Chen 已提交
206 207
        print('Joint_acc: %.4f\n' % metric_out)
        return metric_out
208
    elif args.task_name == 'atis_slot':
Z
Zeyu Chen 已提交
209 210
        print('F1_micro: %.4f\n' % metric_out)
        return metric_out
211
    elif args.task_name in ['atis_intent', 'mrda', 'swda']:
Z
Zeyu Chen 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        print('Acc: %.4f\n' % metric_out)
        return metric_out


def create_data_loader(args, dataset_class, trans_func, batchify_fn, mode):
    dataset = dataset_class(args.data_dir, mode)
    dataset = MapDatasetWrapper(dataset).apply(trans_func, lazy=True)
    if mode == 'train':
        batch_sampler = DistributedBatchSampler(
            dataset, batch_size=args.batch_size, shuffle=True)
    else:
        batch_sampler = BatchSampler(
            dataset, batch_size=args.test_batch_size, shuffle=False)
    data_loader = DataLoader(
        dataset,
        batch_sampler=batch_sampler,
        collate_fn=batchify_fn,
        return_list=True)
    return data_loader


def main(args):
    paddle.set_device('gpu' if args.n_gpu else 'cpu')
    world_size = dist.get_world_size()
    rank = dist.get_rank()
    if world_size > 1 and args.do_train:
        dist.init_parallel_env()

    set_seed(args.seed)

    dataset_class, metric_class = TASK_CLASSES[args.task_name]
    tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
    trans_func = partial(
        dataset_class.convert_example,
        tokenizer=tokenizer,
        max_seq_length=args.max_seq_len)
    test_trans_func = partial(
        dataset_class.convert_example,
        tokenizer=tokenizer,
        max_seq_length=args.test_max_seq_len)
    metric = metric_class()

254
    if args.task_name in ('udc', 'dstc2', 'atis_intent', 'mrda', 'swda'):
Z
Zeyu Chen 已提交
255 256 257 258 259 260 261
        batchify_fn = lambda samples, fn=Tuple(
            Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
            Pad(axis=0, pad_val=tokenizer.pad_token_id),  # segment
            Stack(dtype='int64')  # label
        ): fn(samples)
        model = BertForSequenceClassification.from_pretrained(
            args.model_name_or_path, num_classes=dataset_class.num_classes())
262
    elif args.task_name == 'atis_slot':
Z
Zeyu Chen 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        batchify_fn = lambda samples, fn=Tuple(
            Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
            Pad(axis=0, pad_val=tokenizer.pad_token_id),  # segment
            Pad(axis=0, pad_val=0, dtype='int64')  # label
        ): fn(samples)
        model = BertForTokenClassification.from_pretrained(
            args.model_name_or_path,
            num_classes=dataset_class.num_classes(),
            dropout=0.0)
    if world_size > 1 and args.do_train:
        model = paddle.DataParallel(model)

    if args.do_train:
        train_data_loader = create_data_loader(args, dataset_class, trans_func,
                                               batchify_fn, 'train')
        if args.do_eval:
            dev_data_loader = create_data_loader(
                args, dataset_class, test_trans_func, batchify_fn, 'dev')
        else:
            dev_data_loader = None
        train(args, model, train_data_loader, dev_data_loader, metric, rank)

    if args.do_test:
        if rank == 0:
            test_data_loader = create_data_loader(
                args, dataset_class, test_trans_func, batchify_fn, 'test')
            if args.do_train:
                # If do_eval=True, use best model to evaluate the test data.
                # Otherwise, use final model to evaluate the test data.
                if args.do_eval:
                    args.init_from_ckpt = os.path.join(args.output_dir, 'best')
                    load_ckpt(args, model)
            else:
                if not args.init_from_ckpt:
                    raise ValueError('"init_from_ckpt" should be set.')
                load_ckpt(args, model)
            print('\nTest begin...')
            evaluation(args, model, test_data_loader, metric)


def print_args(args):
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == '__main__':
    args = parse_args()
    set_default_args(args)
    print_args(args)

    if args.n_gpu > 1:
        dist.spawn(main, args=(args, ), nprocs=args.n_gpu)
    else:
        main(args)