inference_model.py 4.4 KB
Newer Older
0
0YuanZhang0 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""save inference model"""

import os
import sys
import argparse
import collections
import numpy as np

import paddle
import paddle.fluid as fluid

from dgu.utils.configure import PDConfig
from dgu.utils.input_field import InputField
from dgu.utils.model_check import check_cuda
import dgu.utils.save_load_io as save_load_io

import dgu.reader as reader
from dgu_net import create_net
import dgu.define_paradigm as define_paradigm 


def do_save_inference_model(args): 
    """save inference model function"""

    task_name = args.task_name.lower()
    paradigm_inst = define_paradigm.Paradigm(task_name)

    processors = {
        'udc': reader.UDCProcessor,
        'swda': reader.SWDAProcessor,
        'mrda': reader.MRDAProcessor,
        'atis_slot': reader.ATISSlotProcessor,
        'atis_intent': reader.ATISIntentProcessor,
        'dstc2': reader.DSTC2Processor,
    }

    test_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(test_prog, startup_prog):
        test_prog.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed

        with fluid.unique_name.guard():

            # define inputs of the network
            num_labels = len(processors[task_name].get_labels()) 

0
0YuanZhang0 已提交
62 63 64 65 66 67 68 69
            src_ids = fluid.data(
                        name='src_ids', shape=[-1, args.max_seq_len], dtype='int64')
            pos_ids = fluid.data(
                        name='pos_ids', shape=[-1, args.max_seq_len], dtype='int64')
            sent_ids = fluid.data(
                        name='sent_ids', shape=[-1, args.max_seq_len], dtype='int64')
            input_mask = fluid.data(
                        name='input_mask', shape=[-1, args.max_seq_len], dtype='float32')
0
0YuanZhang0 已提交
70
            if args.task_name == 'atis_slot': 
0
0YuanZhang0 已提交
71 72
                labels = fluid.data(
                        name='labels', shape=[-1, args.max_seq_len], dtype='int64')
0
0YuanZhang0 已提交
73
            elif args.task_name in ['dstc2', 'dstc2_asr', 'multi-woz']:
0
0YuanZhang0 已提交
74 75
                labels = fluid.data(
                        name='labels', shape=[-1, num_labels], dtype='int64')
0
0YuanZhang0 已提交
76
            else: 
0
0YuanZhang0 已提交
77 78
                labels = fluid.data(
                        name='labels', shape=[-1, 1], dtype='int64')
0
0YuanZhang0 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            
            input_inst = [src_ids, pos_ids, sent_ids, input_mask, labels]
            input_field = InputField(input_inst)
            
            results = create_net(
                    is_training=False, 
                    model_input=input_field, 
                    num_labels=num_labels,
                    paradigm_inst=paradigm_inst,
                    args=args)
            probs = results.get("probs", None)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    assert (args.init_from_params) or (args.init_from_pretrain_model)
    
    if args.init_from_params:
        save_load_io.init_from_params(args, exe, test_prog)
    elif args.init_from_pretrain_model:
        save_load_io.init_from_pretrain_model(args, exe, test_prog)

    # saving inference model
    fluid.io.save_inference_model(
            args.inference_model_dir,
            feeded_var_names=[
                input_field.src_ids.name, 
                input_field.pos_ids.name,
                input_field.sent_ids.name, 
                input_field.input_mask.name
            ],
            target_vars=[
                probs
            ],
            executor=exe,
            main_program=test_prog,
            model_filename="model.pdmodel",
            params_filename="params.pdparams")

    print("save inference model at %s" % (args.inference_model_dir))


if __name__ == "__main__":

    args = PDConfig(yaml_file="./data/config/dgu.yaml")
    args.build()

    check_cuda(args.use_cuda)

    do_save_inference_model(args)