inference_model.py 3.3 KB
Newer Older
0
0YuanZhang0 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.                                                                                                      
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""save inference model for auto dialogue evaluation"""

import os
import sys
import six
import numpy as np
import time
import multiprocessing
import paddle
import paddle.fluid as fluid

import ade.reader as reader
from ade_net import create_net

from ade.utils.configure import PDConfig
from ade.utils.input_field import InputField
from ade.utils.model_check import check_cuda
import ade.utils.save_load_io as save_load_io


def do_save_inference_model(args):

    test_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(test_prog, startup_prog):
        test_prog.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed

        with fluid.unique_name.guard():

0
0YuanZhang0 已提交
45 46 47 48 49 50
            context_wordseq = fluid.data(
                    name='context_wordseq', shape=[-1, 1], dtype='int64', lod_level=1)
            response_wordseq = fluid.data(
                    name='response_wordseq', shape=[-1, 1], dtype='int64', lod_level=1)
            labels = fluid.data(
                    name='labels', shape=[-1, 1], dtype='int64')
0
0YuanZhang0 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

            input_inst = [context_wordseq, response_wordseq, labels]
            input_field = InputField(input_inst)
            data_reader = fluid.io.PyReader(feed_list=input_inst, 
                        capacity=4, iterable=False)

            logits = create_net(
                    is_training=False,
                    model_input=input_field, 
                    args=args
                )

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    assert (args.init_from_params) or (args.init_from_pretrain_model)
    
    if args.init_from_params:
        save_load_io.init_from_params(args, exe, test_prog)
    elif args.init_from_pretrain_model:
        save_load_io.init_from_pretrain_model(args, exe, test_prog)

    # saving inference model
    fluid.io.save_inference_model(
            args.inference_model_dir,
            feeded_var_names=[
                input_field.context_wordseq.name, 
                input_field.response_wordseq.name,
            ],
            target_vars=[
                logits,
            ],
            executor=exe,
            main_program=test_prog,
            model_filename="model.pdmodel",
            params_filename="params.pdparams")

    print("save inference model at %s" % (args.inference_model_dir))


if __name__ == "__main__":
    args = PDConfig(yaml_file="./data/config/ade.yaml")   
    args.build()

    check_cuda(args.use_cuda)

    do_save_inference_model(args)