infer.py 3.1 KB
Newer Older
zhaoyijin666's avatar
zhaoyijin666 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import gzip
import paddle.v2 as paddle
import argparse
import cPickle

from reader import Reader
from network_conf import DNNmodel
from utils import logger


def parse_args():
    """
    parse arguments
    :return:
    """
    parser = argparse.ArgumentParser(
        description="PaddlePaddle Youtube Recall Model Example")
    parser.add_argument(
        '--infer_set_path',
        type=str,
        required=True,
        help="path of the infer set")
    parser.add_argument(
        '--model_path', type=str, required=True, help="path of the model")
    parser.add_argument(
        '--feature_dict',
        type=str,
        required=True,
        help="path of feature_dict.pkl")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=50,
        help="size of mini-batch (default:50)")
    return parser.parse_args()


def infer():
    """
    infer
    """
    args = parse_args()

    # check argument
    assert os.path.exists(
zhaoyijin666's avatar
zhaoyijin666 已提交
49
        args.infer_set_path), 'The infer_set_path path does not exist.'
zhaoyijin666's avatar
zhaoyijin666 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    assert os.path.exists(
        args.model_path), 'The model_path path does not exist.'
    assert os.path.exists(
        args.feature_dict), 'The feature_dict path does not exist.'

    paddle.init(use_gpu=False, trainer_count=1)

    with open(args.feature_dict) as f:
        feature_dict = cPickle.load(f)

    nid_dict = feature_dict['history_clicked_items']
    nid_to_word = dict((v, k) for k, v in nid_dict.items())

    # load the trained model.
    with gzip.open(args.model_path) as f:
        parameters = paddle.parameters.Parameters.from_tar(f)

    # build model
    prediction_layer, fc = DNNmodel(
        dnn_layer_dims=[256, 31], feature_dict=feature_dict,
        is_infer=True).model_cost
    inferer = paddle.inference.Inference(
        output_layer=[prediction_layer, fc], parameters=parameters)

    reader = Reader(feature_dict)
    test_batch = []
    for idx, item in enumerate(reader.infer(args.infer_set_path)):
        test_batch.append(item)
        if len(test_batch) == args.batch_size:
            infer_a_batch(inferer, test_batch, nid_to_word)
            test_batch = []
    if len(test_batch):
        infer_a_batch(inferer, test_batch, nid_to_word)


def infer_a_batch(inferer, test_batch, nid_to_word):
    """
    input a batch of data and infer 
    """
    feeding = {
        'user_id': 0,
        'province': 1,
        'city': 2,
        'history_clicked_items': 3,
        'history_clicked_categories': 4,
        'history_clicked_tags': 5,
        'phone': 6
    }
    probs = inferer.infer(
        input=test_batch,
        feeding=feeding,
        field=["value"],
        flatten_result=False)
    for i, res in enumerate(zip(test_batch, probs[0], probs[1])):
        softmax_output = res[1]
        sort_nid = res[1].argsort()

zhaoyijin666's avatar
zhaoyijin666 已提交
107
        # print top 30 recommended item 
zhaoyijin666's avatar
zhaoyijin666 已提交
108 109 110 111 112 113 114 115 116
        for j in range(1, 30):
            item_id = sort_nid[-1 * j]
            item_id_to_word = nid_to_word[item_id]
            print "%s\t%.6f" \
                    % (item_id_to_word, softmax_output[item_id])


if __name__ == "__main__":
    infer()