train_and_evaluate.py 14.2 KB
Newer Older
Y
Yibing Liu 已提交
1
import os
Y
Yibing Liu 已提交
2
import six
Y
Yibing Liu 已提交
3 4 5 6 7 8 9
import numpy as np
import time
import argparse
import multiprocessing
import paddle
import paddle.fluid as fluid
import utils.reader as reader
Y
Yibing Liu 已提交
10
from utils.util import print_arguments, mkdir
Y
Yibing Liu 已提交
11

Y
Yibing Liu 已提交
12 13 14 15 16
try:
    import cPickle as pickle  #python 2
except ImportError as e:
    import pickle  #python 3

Y
Yibing Liu 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from model import Net


#yapf: disable
def parse_args():
    parser = argparse.ArgumentParser("Training DAM.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=256,
        help='Batch size for training. (default: %(default)d)')
    parser.add_argument(
        '--num_scan_data',
        type=int,
        default=2,
        help='Number of pass for training. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=1e-3,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--data_path',
        type=str,
Y
Yibing Liu 已提交
41
        default="data/data_small.pkl",
Y
Yibing Liu 已提交
42 43 44 45 46 47 48 49 50 51
        help='Path to training data. (default: %(default)s)')
    parser.add_argument(
        '--save_path',
        type=str,
        default="saved_models",
        help='Path to save trained models. (default: %(default)s)')
    parser.add_argument(
        '--use_cuda',
        action='store_true',
        help='If set, use cuda for training.')
Y
Yibing Liu 已提交
52 53 54 55
    parser.add_argument(
        '--use_pyreader',
        action='store_true',
        help='If set, use pyreader for reading data.')
Y
Yibing Liu 已提交
56 57 58 59
    parser.add_argument(
        '--ext_eval',
        action='store_true',
        help='If set, use MAP, MRR ect for evaluation.')
Y
Yibing Liu 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    parser.add_argument(
        '--max_turn_num',
        type=int,
        default=9,
        help='Maximum number of utterances in context.')
    parser.add_argument(
        '--max_turn_len',
        type=int,
        default=50,
        help='Maximum length of setences in turns.')
    parser.add_argument(
        '--word_emb_init',
        type=str,
        default=None,
        help='Path to the initial word embedding.')
    parser.add_argument(
        '--vocab_size',
        type=int,
        default=434512,
        help='The size of vocabulary.')
    parser.add_argument(
        '--emb_size',
        type=int,
        default=200,
        help='The dimension of word embedding.')
    parser.add_argument(
        '--_EOS_',
        type=int,
        default=28270,
Y
Yibing Liu 已提交
89
        help='The id for the end of sentence in vocabulary.')
Y
Yibing Liu 已提交
90 91 92 93 94
    parser.add_argument(
        '--stack_num',
        type=int,
        default=5,
        help='The number of stacked attentive modules in network.')
Y
Yibing Liu 已提交
95 96 97 98 99 100 101 102 103 104
    parser.add_argument(
        '--channel1_num',
        type=int,
        default=32,
        help="The channels' number of the 1st conv3d layer's output.")
    parser.add_argument(
        '--channel2_num',
        type=int,
        default=16,
        help="The channels' number of the 2nd conv3d layer's output.")
Y
Yibing Liu 已提交
105 106 107 108 109 110 111
    args = parser.parse_args()
    return args


#yapf: enable


Y
Yibing Liu 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
def evaluate(score_path, result_file_path):
    if args.ext_eval:
        import utils.douban_evaluation as eva
    else:
        import utils.evaluation as eva
    #write evaluation result
    result = eva.evaluate(score_path)
    with open(result_file_path, 'w') as out_file:
        for p_at in result:
            out_file.write(str(p_at) + '\n')
    print('finish evaluation')
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))


def test_with_feed(exe, program, feed_names, fetch_list, score_path, batches,
                   batch_num, dev_count):
    score_file = open(score_path, 'w')
    for it in six.moves.xrange(batch_num // dev_count):
        feed_list = []
        for dev in six.moves.xrange(dev_count):
            val_index = it * dev_count + dev
            batch_data = reader.make_one_batch_input(batches, val_index)
            feed_dict = dict(zip(feed_names, batch_data))
            feed_list.append(feed_dict)

            predicts = exe.run(feed=feed_list, fetch_list=fetch_list)

            scores = np.array(predicts[0])
            for dev in six.moves.xrange(dev_count):
                val_index = it * dev_count + dev
                for i in six.moves.xrange(args.batch_size):
                    score_file.write(
                        str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                            batches["label"][val_index][i]) + '\n')
    score_file.close()


def test_with_pyreader(exe, program, pyreader, fetch_list, score_path, batches,
                       batch_num, dev_count):
    def data_provider():
        for index in six.moves.xrange(batch_num):
            yield reader.make_one_batch_input(batches, index)

    score_file = open(score_path, 'w')
    pyreader.decorate_tensor_provider(data_provider)
    it = 0
    pyreader.start()
    while True:
        try:
            predicts = exe.run(fetch_list=fetch_list)

            scores = np.array(predicts[0])
            for dev in six.moves.xrange(dev_count):
                val_index = it * dev_count + dev
                for i in six.moves.xrange(args.batch_size):
                    score_file.write(
                        str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                            batches["label"][val_index][i]) + '\n')
            it += 1
        except fluid.core.EOFException:
            pyreader.reset()
            break
    score_file.close()


Y
Yibing Liu 已提交
177
def train(args):
Y
Yibing Liu 已提交
178 179 180
    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

Y
Yibing Liu 已提交
181 182 183 184 185 186 187 188 189
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
Y
Yibing Liu 已提交
190 191
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
Y
Yibing Liu 已提交
192

Y
Yibing Liu 已提交
193 194
    train_program = fluid.Program()
    train_startup = fluid.Program()
Y
Yibing Liu 已提交
195 196 197
    if "CE_MODE_X" in os.environ:
        train_program.random_seed = 110
        train_startup.random_seed = 110
Y
Yibing Liu 已提交
198 199 200 201 202 203 204 205 206 207 208
    with fluid.program_guard(train_program, train_startup):
        with fluid.unique_name.guard():
            if args.use_pyreader:
                train_pyreader = dam.create_py_reader(
                    capacity=10, name='train_reader')
            else:
                dam.create_data_layers()
            loss, logits = dam.create_network()
            loss.persistable = True
            logits.persistable = True
            # gradient clipping
Y
Yibing Liu 已提交
209 210
            fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
                max=1.0, min=-1.0))
Y
Yibing Liu 已提交
211 212 213 214 215 216 217 218

            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=args.learning_rate,
                    decay_steps=400,
                    decay_rate=0.9,
                    staircase=True))
            optimizer.minimize(loss)
Y
Yibing Liu 已提交
219
            print("begin memory optimization ...")
Y
Yibing Liu 已提交
220
            fluid.memory_optimize(train_program)
Y
Yibing Liu 已提交
221
            print("end memory optimization ...")
Y
Yibing Liu 已提交
222 223 224

    test_program = fluid.Program()
    test_startup = fluid.Program()
Y
Yibing Liu 已提交
225 226 227
    if "CE_MODE_X" in os.environ:
        test_program.random_seed = 110
        test_startup.random_seed = 110
Y
Yibing Liu 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240
    with fluid.program_guard(test_program, test_startup):
        with fluid.unique_name.guard():
            if args.use_pyreader:
                test_pyreader = dam.create_py_reader(
                    capacity=10, name='test_reader')
            else:
                dam.create_data_layers()

            loss, logits = dam.create_network()
            loss.persistable = True
            logits.persistable = True

    test_program = test_program.clone(for_test=True)
Y
Yibing Liu 已提交
241 242 243 244 245 246

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
S
fix bug  
sneaxiy 已提交
247
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
Y
Yibing Liu 已提交
248 249

    print("device count %d" % dev_count)
Y
Yibing Liu 已提交
250 251 252
    print("theoretical memory usage: ")
    print(fluid.contrib.memory_usage(
        program=train_program, batch_size=args.batch_size))
Y
Yibing Liu 已提交
253 254

    exe = fluid.Executor(place)
Y
Yibing Liu 已提交
255 256
    exe.run(train_startup)
    exe.run(test_startup)
Y
Yibing Liu 已提交
257 258 259 260 261 262 263 264 265 266 267

    train_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, loss_name=loss.name, main_program=train_program)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda,
        main_program=test_program,
        share_vars_from=train_exe)

    if args.word_emb_init is not None:
        print("start loading word embedding init ...")
Y
Yibing Liu 已提交
268 269 270 271 272 273 274 275
        if six.PY2:
            word_emb = np.array(pickle.load(open(args.word_emb_init,
                                                 'rb'))).astype('float32')
        else:
            word_emb = np.array(
                pickle.load(
                    open(args.word_emb_init, 'rb'), encoding="bytes")).astype(
                        'float32')
Y
Yibing Liu 已提交
276 277
        dam.set_word_embedding(word_emb, place)
        print("finish init word embedding  ...")
Y
Yibing Liu 已提交
278 279

    print("start loading data ...")
Y
Yibing Liu 已提交
280 281 282 283 284
    with open(args.data_path, 'rb') as f:
        if six.PY2:
            train_data, val_data, test_data = pickle.load(f)
        else:
            train_data, val_data, test_data = pickle.load(f, encoding="bytes")
Y
Yibing Liu 已提交
285 286 287 288
    print("finish loading data ...")

    val_batches = reader.build_batches(val_data, data_conf)

Y
Yibing Liu 已提交
289
    batch_num = len(train_data[six.b('y')]) // args.batch_size
Y
Yibing Liu 已提交
290 291
    val_batch_num = len(val_batches["response"])

Y
Yibing Liu 已提交
292 293
    print_step = max(1, batch_num // (dev_count * 100))
    save_step = max(1, batch_num // (dev_count * 10))
Y
Yibing Liu 已提交
294 295 296 297

    print("begin model training ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

Y
Yibing Liu 已提交
298 299
    # train on one epoch data by feeding
    def train_with_feed(step):
Y
Yibing Liu 已提交
300
        ave_cost = 0.0
Y
Yibing Liu 已提交
301
        for it in six.moves.xrange(batch_num // dev_count):
Y
Yibing Liu 已提交
302
            feed_list = []
Y
Yibing Liu 已提交
303
            for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
304
                index = it * dev_count + dev
Y
Yibing Liu 已提交
305 306
                batch_data = reader.make_one_batch_input(train_batches, index)
                feed_dict = dict(zip(dam.get_feed_names(), batch_data))
Y
Yibing Liu 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320
                feed_list.append(feed_dict)

            cost = train_exe.run(feed=feed_list, fetch_list=[loss.name])

            ave_cost += np.array(cost[0]).mean()
            step = step + 1
            if step % print_step == 0:
                print("processed: [" + str(step * dev_count * 1.0 / batch_num) +
                      "] ave loss: [" + str(ave_cost / print_step) + "]")
                ave_cost = 0.0

            if (args.save_path is not None) and (step % save_step == 0):
                save_path = os.path.join(args.save_path, "step_" + str(step))
                print("Save model at step %d ... " % step)
Y
Yibing Liu 已提交
321 322
                print(time.strftime('%Y-%m-%d %H:%M:%S',
                                    time.localtime(time.time())))
Y
Yibing Liu 已提交
323
                fluid.io.save_persistables(exe, save_path, train_program)
Y
Yibing Liu 已提交
324 325

                score_path = os.path.join(args.save_path, 'score.' + str(step))
Y
Yibing Liu 已提交
326 327 328 329
                test_with_feed(test_exe, test_program,
                               dam.get_feed_names(), [logits.name], score_path,
                               val_batches, val_batch_num, dev_count)

Y
Yibing Liu 已提交
330 331
                result_file_path = os.path.join(args.save_path,
                                                'result.' + str(step))
Y
Yibing Liu 已提交
332
                evaluate(score_path, result_file_path)
Y
Yibing Liu 已提交
333
        return step, np.array(cost[0]).mean()
Y
Yibing Liu 已提交
334

335
    # train on one epoch with pyreader
Y
Yibing Liu 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    def train_with_pyreader(step):
        def data_provider():
            for index in six.moves.xrange(batch_num):
                yield reader.make_one_batch_input(train_batches, index)

        train_pyreader.decorate_tensor_provider(data_provider)

        ave_cost = 0.0
        train_pyreader.start()
        while True:
            try:
                cost = train_exe.run(fetch_list=[loss.name])

                ave_cost += np.array(cost[0]).mean()
                step = step + 1
                if step % print_step == 0:
                    print("processed: [" + str(step * dev_count * 1.0 /
                                               batch_num) + "] ave loss: [" +
                          str(ave_cost / print_step) + "]")
                    ave_cost = 0.0

                if (args.save_path is not None) and (step % save_step == 0):
                    save_path = os.path.join(args.save_path,
                                             "step_" + str(step))
                    print("Save model at step %d ... " % step)
                    print(time.strftime('%Y-%m-%d %H:%M:%S',
                                        time.localtime(time.time())))
                    fluid.io.save_persistables(exe, save_path, train_program)

                    score_path = os.path.join(args.save_path,
                                              'score.' + str(step))
                    test_with_pyreader(test_exe, test_program, test_pyreader,
                                       [logits.name], score_path, val_batches,
                                       val_batch_num, dev_count)

                    result_file_path = os.path.join(args.save_path,
                                                    'result.' + str(step))
                    evaluate(score_path, result_file_path)

            except fluid.core.EOFException:
                train_pyreader.reset()
                break
Y
Yibing Liu 已提交
378
        return step, np.array(cost[0]).mean()
Y
Yibing Liu 已提交
379 380

    # train over different epoches
Y
Yibing Liu 已提交
381
    global_step, train_time = 0, 0.0
Y
Yibing Liu 已提交
382
    for epoch in six.moves.xrange(args.num_scan_data):
Y
Yibing Liu 已提交
383 384
        shuffle_train = reader.unison_shuffle(
            train_data, seed=110 if ("CE_MODE_X" in os.environ) else None)
Y
Yibing Liu 已提交
385 386
        train_batches = reader.build_batches(shuffle_train, data_conf)

Y
Yibing Liu 已提交
387
        begin_time = time.time()
Y
Yibing Liu 已提交
388
        if args.use_pyreader:
Y
Yibing Liu 已提交
389
            global_step, last_cost = train_with_pyreader(global_step)
Y
Yibing Liu 已提交
390
        else:
Y
Yibing Liu 已提交
391 392
            global_step, last_cost = train_with_feed(global_step)
        train_time += time.time() - begin_time
393 394
        print("Pass {0}, pass_time_cost {1}"
          .format(epoch, "%2.2f sec" % time.time() -begin_time ))
Y
Yibing Liu 已提交
395 396 397 398
    # For internal continuous evaluation
    if "CE_MODE_X" in os.environ:
        print("kpis	train_cost	%f" % last_cost)
        print("kpis	train_duration	%f" % train_time)
Y
Yibing Liu 已提交
399 400 401 402 403 404


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    train(args)