run_squad.py 8.8 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import os
import random
import time

from functools import partial
import numpy as np
import paddle

from paddle.io import DataLoader
from args import parse_args

import paddlenlp as ppnlp

from paddlenlp.data import Pad, Stack, Tuple
from paddlenlp.transformers import BertForQuestionAnswering, BertTokenizer, ErnieForQuestionAnswering, ErnieTokenizer
from paddlenlp.metrics.squad import squad_evaluate, compute_predictions

MODEL_CLASSES = {
    "bert": (BertForQuestionAnswering, BertTokenizer),
    "ernie": (ErnieForQuestionAnswering, ErnieTokenizer)
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    paddle.seed(args.seed)


class CrossEntropyLossForSQuAD(paddle.nn.Layer):
    def __init__(self):
        super(CrossEntropyLossForSQuAD, self).__init__()

    def forward(self, y, label):
        start_logits, end_logits = y
        start_position, end_position = label
        start_position = paddle.unsqueeze(start_position, axis=-1)
        end_position = paddle.unsqueeze(end_position, axis=-1)
        start_loss = paddle.nn.functional.softmax_with_cross_entropy(
            logits=start_logits, label=start_position, soft_label=False)
        start_loss = paddle.mean(start_loss)
        end_loss = paddle.nn.functional.softmax_with_cross_entropy(
            logits=end_logits, label=end_position, soft_label=False)
        end_loss = paddle.mean(end_loss)

        loss = (start_loss + end_loss) / 2
        return loss


def evaluate(model, data_loader, args):
    model.eval()

    RawResult = collections.namedtuple(
        "RawResult", ["unique_id", "start_logits", "end_logits"])

    all_results = []
    tic_eval = time.time()

    for batch in data_loader:
        input_ids, segment_ids, unipue_ids = batch
        start_logits_tensor, end_logits_tensor = model(input_ids, segment_ids)

        for idx in range(unipue_ids.shape[0]):
            if len(all_results) % 1000 == 0 and len(all_results):
                print("Processing example: %d" % len(all_results))
                print('time per 1000:', time.time() - tic_eval)
                tic_eval = time.time()
            unique_id = int(unipue_ids[idx])
            start_logits = [float(x) for x in start_logits_tensor.numpy()[idx]]
            end_logits = [float(x) for x in end_logits_tensor.numpy()[idx]]
            all_results.append(
                RawResult(
                    unique_id=unique_id,
                    start_logits=start_logits,
                    end_logits=end_logits))

    all_predictions, all_nbest_json, scores_diff_json = compute_predictions(
        data_loader.dataset.examples, data_loader.dataset.data, all_results,
        args.n_best_size, args.max_answer_length, args.do_lower_case,
        args.version_2_with_negative, args.null_score_diff_threshold,
        args.verbose, data_loader.dataset.tokenizer)

    squad_evaluate(data_loader.dataset.examples, all_predictions,
                   scores_diff_json, 1.0)

    model.train()


def do_train(args):
    paddle.set_device("gpu" if args.n_gpu else "cpu")
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    root = args.data_path

    set_seed(args)

    train_dataset = ppnlp.datasets.SQuAD(
        tokenizer=tokenizer,
        doc_stride=args.doc_stride,
        root=root,
        version_2_with_negative=args.version_2_with_negative,
        max_query_length=args.max_query_length,
        max_seq_length=args.max_seq_length,
        segment="train")

    train_batch_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.batch_size, shuffle=True)

    train_batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),  # input
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),  # segment
        Stack(),  # unipue_id
        Stack(dtype="int64"),  # start_pos
        Stack(dtype="int64")  # end_pos
    ): [data for i, data in enumerate(fn(samples)) if i != 2]

    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_sampler=train_batch_sampler,
        collate_fn=train_batchify_fn,
        return_list=True)

    dev_dataset = ppnlp.datasets.SQuAD(
        tokenizer=tokenizer,
        doc_stride=args.doc_stride,
        root=root,
        version_2_with_negative=args.version_2_with_negative,
        max_query_length=args.max_query_length,
        max_seq_length=args.max_seq_length,
        segment="dev")

    dev_batch_sampler = paddle.io.BatchSampler(
        dev_dataset, batch_size=args.batch_size, shuffle=False)

    dev_batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),  # input
        Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]),  # segment
        Stack()  # unipue_id
    ): fn(samples)

    dev_data_loader = DataLoader(
        dataset=dev_dataset,
        batch_sampler=dev_batch_sampler,
        collate_fn=dev_batchify_fn,
        return_list=True)

    model = model_class.from_pretrained(args.model_name_or_path)

    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    lr_scheduler = paddle.optimizer.lr.LambdaDecay(
        args.learning_rate,
        lambda current_step, warmup_proportion=args.warmup_proportion,
        num_training_steps=args.max_steps if args.max_steps > 0 else
        (len(train_dataset.examples)//args.batch_size*args.num_train_epochs): float(
            current_step) / float(max(1, warmup_proportion*num_training_steps))
        if current_step < warmup_proportion*num_training_steps else max(
            0.0,
            float(num_training_steps - current_step) / float(
                max(1, num_training_steps - warmup_proportion*num_training_steps))))

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])
    criterion = CrossEntropyLossForSQuAD()

    global_step = 0
    tic_train = time.time()
    for epoch in range(args.num_train_epochs):
        for step, batch in enumerate(train_data_loader):
            global_step += 1
            input_ids, segment_ids, start_positions, end_positions = batch

            logits = model(input_ids=input_ids, token_type_ids=segment_ids)
            loss = criterion(logits, (start_positions, end_positions))

            if global_step % args.logging_steps == 0:
                print(
                    "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                    % (global_step, epoch, step, loss,
                       args.logging_steps / (time.time() - tic_train)))
                tic_train = time.time()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.clear_gradients()

            if global_step % args.save_steps == 0:
                if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0:
                    output_dir = os.path.join(args.output_dir,
                                              "model_%d" % global_step)
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    # need better way to get inner model of DataParallel
                    model_to_save = model._layers if isinstance(
                        model, paddle.DataParallel) else model
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    print('Saving checkpoint to:', output_dir)

        if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0:
            evaluate(model, dev_data_loader, args)


if __name__ == "__main__":
    args = parse_args()
    if args.n_gpu > 1:
        paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_gpu)
    else:
        do_train(args)