predict.py 8.3 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import argparse
import os
import random
import time

import numpy as np
import paddle
import paddle.nn.functional as F

from paddlenlp.data import Stack, Tuple, Pad
import paddlenlp as ppnlp

MODEL_CLASSES = {
    "bert": (ppnlp.transformers.BertForSequenceClassification,
             ppnlp.transformers.BertTokenizer),
    'ernie': (ppnlp.transformers.ErnieForSequenceClassification,
              ppnlp.transformers.ErnieTokenizer),
    'roberta': (ppnlp.transformers.RobertaForSequenceClassification,
                ppnlp.transformers.RobertaTokenizer),
    'electra': (ppnlp.transformers.ElectraForSequenceClassification,
                ppnlp.transformers.ElectraTokenizer)
}


# yapf: disable
def parse_args():
    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument("--model_type", default='ernie', required=True, type=str, help="Model type selected in the list: " +", ".join(MODEL_CLASSES.keys()))
45
    parser.add_argument("--model_name_or_path", default='ernie-tiny', required=True, type=str, help="Path to pre-trained model or shortcut name selected in the list: " +
Z
Zeyu Chen 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        ", ".join(sum([list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values()], [])))
    parser.add_argument("--params_path", type=str, required=True, help="The path to model parameters to be loaded.")

    parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. "
        "Sequences longer than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs to use, 0 for CPU.")
    args = parser.parse_args()
    return args
# yapf: enable


def convert_example(example,
                    tokenizer,
                    label_list,
                    max_seq_length=512,
                    is_test=False):
    """
    Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
    by concatenating and adding special tokens. And creates a mask from the two sequences passed 
    to be used in a sequence-pair classification task.
        
    A BERT sequence has the following format:

    - single sequence: ``[CLS] X [SEP]``
    - pair of sequences: ``[CLS] A [SEP] B [SEP]``

    A BERT sequence pair mask has the following format:
    ::
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |

    If only one sequence, only returns the first portion of the mask (0's).


    Args:
        example(obj:`list[str]`): List of input data, containing text and label if it have label.
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        label_list(obj:`list[str]`): All the labels that the data has.
        max_seq_len(obj:`int`): The maximum total input sequence length after tokenization. 
            Sequences longer than this will be truncated, sequences shorter will be padded.
        is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.

    Returns:
        input_ids(obj:`list[int]`): The list of token ids.
        segment_ids(obj: `list[int]`): List of sequence pair mask.
        label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
    """
    text = example
    encoded_inputs = tokenizer.encode(text=text, max_seq_len=max_seq_length)
    input_ids = encoded_inputs["input_ids"]
    segment_ids = encoded_inputs["segment_ids"]

    if not is_test:
        # create label maps
        label_map = {}
        for (i, l) in enumerate(label_list):
            label_map[l] = i

        label = label_map[label]
        label = np.array([label], dtype="int64")
        return input_ids, segment_ids, label
    else:
        return input_ids, segment_ids


def predict(model, data, tokenizer, label_map, batch_size=1):
    """
    Predicts the data labels.

    Args:
        model (obj:`paddle.nn.Layer`): A model to classify texts.
        data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
            A Example object contains `text`(word_ids) and `se_len`(sequence length).
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        label_map(obj:`dict`): The label id (key) to label str (value) map.
        batch_size(obj:`int`, defaults to 1): The number of batch.

    Returns:
        results(obj:`dict`): All the predictions labels.
    """
    examples = []
    for text in data:
        input_ids, segment_ids = convert_example(
            [text],
            tokenizer,
            label_list=label_map.values(),
            max_seq_length=args.max_seq_length,
            is_test=True)
        examples.append((input_ids, segment_ids))

    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # segment
    ): fn(samples)

    # Seperates data into some batches.
    batches = []
    one_batch = []
    for example in examples:
        one_batch.append(example)
        if len(one_batch) == batch_size:
            batches.append(one_batch)
            one_batch = []
    if one_batch:
        # The last batch whose size is less than the config batch_size setting.
        batches.append(one_batch)

    results = []
    model.eval()
    for batch in batches:
        input_ids, segment_ids = batchify_fn(batch)
        input_ids = paddle.to_tensor(input_ids)
        segment_ids = paddle.to_tensor(segment_ids)
        logits = model(input_ids, segment_ids)
        probs = F.softmax(logits, axis=1)
        idx = paddle.argmax(probs, axis=1).numpy()
        idx = idx.tolist()
        labels = [label_map[i] for i in idx]
        results.extend(labels)
    return results


if __name__ == "__main__":
    args = parse_args()
    paddle.set_device("gpu" if args.n_gpu else "cpu")

    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    if args.model_name_or_path == 'ernie_tiny':
        # ErnieTinyTokenizer is special for ernie_tiny pretained model.
        tokenizer = ppnlp.transformers.ErnieTinyTokenizer.from_pretrained(
            args.model_name_or_path)
    else:
        tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)

    data = [
        '这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
        '怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
        '作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
    ]
    label_map = {0: 'negative', 1: 'positive'}

    model = model_class.from_pretrained(
        args.model_name_or_path, num_classes=len(label_map))

    if args.params_path and os.path.isfile(args.params_path):
        state_dict = paddle.load(args.params_path)
        model.set_dict(state_dict)
        print("Loaded parameters from %s" % args.params_path)

    results = predict(
        model, data, tokenizer, label_map, batch_size=args.batch_size)
    for idx, text in enumerate(data):
        print('Data: {} \t Lable: {}'.format(text, results[idx]))