network_conf.py 1.6 KB
Newer Older
P
peterzhang2029 已提交
1 2 3 4 5 6 7 8
import paddle.v2 as paddle


def cnn_cov_group(group_input, hidden_size):
    conv3 = paddle.networks.sequence_conv_pool(
        input=group_input, context_len=3, hidden_size=hidden_size)
    conv4 = paddle.networks.sequence_conv_pool(
        input=group_input, context_len=4, hidden_size=hidden_size)
9

P
peterzhang2029 已提交
10 11 12 13 14 15
    output_group = paddle.layer.fc(
        input=[conv3, conv4],
        size=hidden_size,
        param_attr=paddle.attr.ParamAttr(name='_cov_value_weight'),
        bias_attr=paddle.attr.ParamAttr(name='_cov_value_bias'),
        act=paddle.activation.Linear())
16

P
peterzhang2029 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    return output_group


def nest_net(dict_dim,
             emb_size=28,
             hidden_size=128,
             class_num=2,
             is_infer=False):

    data = paddle.layer.data(
        "word", paddle.data_type.integer_value_sub_sequence(dict_dim))

    emb = paddle.layer.embedding(input=data, size=emb_size)
    nest_group = paddle.layer.recurrent_group(
        input=[paddle.layer.SubsequenceInput(emb), hidden_size],
        step=cnn_cov_group)
    avg_pool = paddle.layer.pooling(
        input=nest_group,
        pooling_type=paddle.pooling.Avg(),
        agg_level=paddle.layer.AggregateLevel.TO_NO_SEQUENCE)
    prob = paddle.layer.mixed(
        size=class_num,
        input=[paddle.layer.full_matrix_projection(input=avg_pool)],
        act=paddle.activation.Softmax())
    if is_infer == False:
        label = paddle.layer.data("label",
                                  paddle.data_type.integer_value(class_num))
        cost = paddle.layer.classification_cost(input=prob, label=label)
        return cost, prob, label

    return prob