train.py 4.6 KB
Newer Older
P
peterzhang2029 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
import numpy as np
import sys
import os
import argparse
import time

import paddle.v2 as paddle
import paddle.v2.fluid as fluid

from config import TrainConfig as conf


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--dict_path',
        type=str,
        required=True,
        help="Path of the word dictionary.")
    return parser.parse_args()


# Define to_lodtensor function to process the sequential data.
def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


# Load the dictionary.
def load_vocab(filename):
    vocab = {}
    with open(filename) as f:
43 44
        for idx, line in enumerate(f):
            vocab[line.strip()] = idx
P
peterzhang2029 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    return vocab


# Define the convolution model.
def conv_net(dict_dim,
             window_size=3,
             emb_dim=128,
             num_filters=128,
             fc0_dim=96,
             class_dim=2):

    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    label = fluid.layers.data(name="label", shape=[1], dtype="int64")

    emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])

    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=num_filters,
        filter_size=window_size,
        act="tanh",
        pool_type="max")

    fc_0 = fluid.layers.fc(input=[conv_3], size=fc0_dim)

    prediction = fluid.layers.fc(input=[fc_0], size=class_dim, act="softmax")

    cost = fluid.layers.cross_entropy(input=prediction, label=label)

    avg_cost = fluid.layers.mean(x=cost)

    return data, label, prediction, avg_cost


def main(dict_path):
    word_dict = load_vocab(dict_path)
    word_dict["<unk>"] = len(word_dict)
    dict_dim = len(word_dict)
    print("The dictionary size is : %d" % dict_dim)

    data, label, prediction, avg_cost = conv_net(dict_dim)

    sgd_optimizer = fluid.optimizer.SGD(learning_rate=conf.learning_rate)
    sgd_optimizer.minimize(avg_cost)

    accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)

    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        test_target = accuracy.metrics + accuracy.states
        inference_program = fluid.io.get_inference_program(test_target)

    # The training data set.
    train_reader = paddle.batch(
        paddle.reader.shuffle(
102
            paddle.dataset.imdb.train(word_dict), buf_size=51200),
P
peterzhang2029 已提交
103 104 105 106 107
        batch_size=conf.batch_size)

    # The testing data set.
    test_reader = paddle.batch(
        paddle.reader.shuffle(
108
            paddle.dataset.imdb.test(word_dict), buf_size=51200),
P
peterzhang2029 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        batch_size=conf.batch_size)

    if conf.use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)

    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)

    exe.run(fluid.default_startup_program())

    def test(exe):
        accuracy.reset(exe)
        for batch_id, data in enumerate(test_reader()):
            input_seq = to_lodtensor(map(lambda x: x[0], data), place)
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])
            acc = exe.run(inference_program,
                          feed={"words": input_seq,
                                "label": y_data})
        test_acc = accuracy.eval(exe)
        return test_acc

    total_time = 0.
    for pass_id in xrange(conf.num_passes):
        accuracy.reset(exe)
        start_time = time.time()
        for batch_id, data in enumerate(train_reader()):
            cost_val, acc_val = exe.run(
                fluid.default_main_program(),
                feed=feeder.feed(data),
                fetch_list=[avg_cost, accuracy.metrics[0]])
            pass_acc = accuracy.eval(exe)
            if batch_id and batch_id % conf.log_period == 0:
                print("Pass id: %d, batch id: %d, cost: %f, pass_acc %f" %
                      (pass_id, batch_id, cost_val, pass_acc))
        end_time = time.time()
        total_time += (end_time - start_time)
        pass_test_acc = test(exe)
        print("Pass id: %d, test_acc: %f" % (pass_id, pass_test_acc))
    print("Total train time: %f" % (total_time))


if __name__ == '__main__':
    args = parse_args()
    main(args.dict_path)