pipeline.py 36.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
import copy
from collections import defaultdict
from pipeline.datacollector import DataCollector, Result

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from pipeline.cfg_utils import argsparser, merge_cfg
from pipeline.pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
from pipeline.pipe_utils import PushStream, PipeTimer

from python.infer import Detector, DetectorPicoDet
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
from python.preprocess import decode_image, ShortSizeScale
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate

from pptracking.python.mot_sde_infer import SDE_Detector
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic, update_object_info

from pipeline.pphuman.attr_infer import AttrDetector
from pipeline.pphuman.video_action_infer import VideoActionRecognizer
from pipeline.pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pipeline.pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pipeline.pphuman.reid import ReID
from pipeline.pphuman.mtmct import mtmct_process

from pipeline.download import auto_download_model


class Pipeline(object):
    """
    Pipeline

    Args:
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
        cfg (dict): config of models in pipeline
    """

    def __init__(self, args, cfg):
        self.multi_camera = False
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
        self.is_video = False
        self.output_dir = args.output_dir
        self.vis_result = cfg['visual']
        self.input = self._parse_input(args.image_file, args.video_file)

        self.predictor = PipePredictor(args, cfg, self.is_video)
        if self.is_video:
            self.predictor.set_file_name(self.input)

    def _parse_input(self, image, video_file):

        # parse input as is_video and multi_camera

        if image is not None:

            input = image
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
            input = video_file
            self.is_video = True
        else:
            raise ValueError(
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
            )

        return input

    def run_multithreads(self):

        out = self.predictor.run(self.input)
        return out

    def run(self):
        out = self.predictor.run(self.input)
        return out


def get_model_dir_with_list(cfg, args):
    activate_list = args.avtivity_list
    """ 
        Auto download inference model if the model_path is a url link. 
        Otherwise it will use the model_path directly.
    """
    for key in cfg.keys():
        if type(cfg[key]) == dict and ((key in activate_list) or
                                       "enable" not in cfg[key].keys()):
            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
                    cfg[key]["model_dir"] = model_dir
                print(key, " model dir: ", model_dir)
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
                    cfg[key]["det_model_dir"] = det_model_dir
                print("det_model_dir model dir: ", det_model_dir)

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
                    cfg[key]["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir: ", rec_model_dir)

        elif key == "MOT" and (
                key in activate_list):  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
                cfg[key]["model_dir"] = model_dir
            print("mot_model_dir model_dir: ", model_dir)


def get_model_dir(cfg):
    """ 
        Auto download inference model if the model_path is a url link. 
        Otherwise it will use the model_path directly.
    """
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
                    cfg[key]["model_dir"] = model_dir
                print(key, " model dir: ", model_dir)
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
                    cfg[key]["det_model_dir"] = det_model_dir
                print("det_model_dir model dir: ", det_model_dir)

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
                    cfg[key]["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir: ", rec_model_dir)

        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
                cfg[key]["model_dir"] = model_dir
            print("mot_model_dir model_dir: ", model_dir)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
        4. VideoAction Recognition

    Args:
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
    """

    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        # general module for pphuman and ppvehicle
        activate_list = args.avtivity_list
        self.with_mot = True if 'MOT' in activate_list else False
        self.with_human_attr = True if 'ATTR' in activate_list else False
        if self.with_mot:
            print('Multi-Object Tracking enabled')
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')

        # only for pphuman
        self.with_skeleton_action = True if 'SKELETON_ACTION' in activate_list else False

        self.with_video_action = True if 'VIDEO_ACTION' in activate_list else False

        self.with_idbased_detaction = True if 'ID_BASED_DETACTION' in activate_list else False

        self.with_idbased_clsaction = True if 'ID_BASED_CLSACTION' in activate_list else False

        self.with_mtmct = True if 'REID' in activate_list else False

        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
        if self.with_mtmct:
            print("MTMCT enabled")

        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }

        self.basemode = {
            "MOT": "idbased",
            "ATTR": "idbased",
            "VIDEO_ACTION": "videobased",
            "SKELETON_ACTION": "skeletonbased",
            "ID_BASED_DETACTION": "idbased",
            "ID_BASED_CLSACTION": "idbased",
            "REID": "idbased",
        }

        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg

        self.output_dir = args.output_dir
        self.draw_center_traj = True if 'draw_center_traj' in activate_list else False
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = True if 'do_entrance_counting' in activate_list else False
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
        self.illegal_parking_time = args.illegal_parking_time

        self.warmup_frame = self.cfg['warmup_frame']
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
        self.file_name = None
        self.collector = DataCollector()

        self.pushurl = args.pushurl

        # auto download inference model
        get_model_dir_with_list(self.cfg, args)

        if self.with_human_attr:
            attr_cfg = self.cfg['ATTR']
            basemode = self.basemode['ATTR']
            self.modebase[basemode] = True
            self.attr_predictor = AttrDetector.init_with_cfg(args, attr_cfg)

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, args.device, args.run_mode, batch_size,
                args.trt_min_shape, args.trt_max_shape, args.trt_opt_shape,
                args.trt_calib_mode, args.cpu_threads, args.enable_mkldnn)
        else:
            if self.with_idbased_detaction:
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
                basemode = self.basemode['ID_BASED_DETACTION']
                self.modebase[basemode] = True

                self.det_action_predictor = DetActionRecognizer.init_with_cfg(
                    args, idbased_detaction_cfg)
                self.det_action_visual_helper = ActionVisualHelper(1)

            if self.with_idbased_clsaction:
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
                basemode = self.basemode['ID_BASED_CLSACTION']
                self.modebase[basemode] = True

                self.cls_action_predictor = ClsActionRecognizer.init_with_cfg(
                    args, idbased_clsaction_cfg)
                self.cls_action_visual_helper = ActionVisualHelper(1)

            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
                basemode = self.basemode['SKELETON_ACTION']
                self.modebase[basemode] = True
                skeleton_action_frames = skeleton_action_cfg['max_frames']

                self.skeleton_action_predictor = SkeletonActionRecognizer.init_with_cfg(
                    args, skeleton_action_cfg)
                self.skeleton_action_visual_helper = ActionVisualHelper(
                    display_frames)

                kpt_cfg = self.cfg['KPT']
                kpt_model_dir = kpt_cfg['model_dir']
                kpt_batch_size = kpt_cfg['batch_size']
                self.kpt_predictor = KeyPointDetector(
                    kpt_model_dir,
                    args.device,
                    args.run_mode,
                    kpt_batch_size,
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
                    use_dark=False)
                self.kpt_buff = KeyPointBuff(skeleton_action_frames)

            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
                basemode = self.basemode['REID']
                self.modebase[basemode] = True
                self.reid_predictor = ReID.init_with_cfg(args, reid_cfg)

            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
                model_dir = mot_cfg['model_dir']
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
                skip_frame_num = mot_cfg.get('skip_frame_num', -1)
                basemode = self.basemode['MOT']
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
                    args.device,
                    args.run_mode,
                    batch_size,
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
                    skip_frame_num=skip_frame_num,
                    draw_center_traj=self.draw_center_traj,
                    secs_interval=self.secs_interval,
                    do_entrance_counting=self.do_entrance_counting,
                    do_break_in_counting=self.do_break_in_counting,
                    region_type=self.region_type,
                    region_polygon=self.region_polygon)

            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']
                basemode = self.basemode['VIDEO_ACTION']
                self.modebase[basemode] = True
                self.video_action_predictor = VideoActionRecognizer.init_with_cfg(
                    args, video_action_cfg)

    def set_file_name(self, path):
        if path is not None:
            if "." in path:
                self.file_name = path.split(".")[-2]
        else:
            # use camera id
            self.file_name = None

    def get_result(self):
        return self.collector.get_res()

    def run(self, input, thread_idx=0):

        if self.is_video:
            out = self.predict_video(input, thread_idx=thread_idx)
            return out
        else:
            out = self.predict_image(input)
            return out

    def predict_image(self, input):
        # det
        # det -> attr
        batch_input = [decode_image(input, {})[0]]
        batch_input[0] = cv2.cvtColor(batch_input[0], cv2.COLOR_BGR2RGB)
        # det output format: class, score, xmin, ymin, xmax, ymax
        det_res = self.det_predictor.predict_image(batch_input, visual=False)
        det_res = self.det_predictor.filter_box(det_res,
                                                self.cfg['crop_thresh'])

        self.pipeline_res.update(det_res, 'det')

        if self.with_human_attr:
            crop_inputs = crop_image_with_det(batch_input, det_res)
            attr_res_list = []

            for crop_input in crop_inputs:
                attr_res = self.attr_predictor.predict_image(
                    crop_input, visual=False)
                attr_res_list.extend(attr_res['output'])

            attr_res = {'output': attr_res_list}
            self.pipeline_res.update(attr_res, 'attr')

        return self.visualize_image(batch_input, self.pipeline_res)

    def predict_video(self, video_file, thread_idx=0):
        # mot
        # mot -> attr
        # mot -> pose -> action
        capture = cv2.VideoCapture(video_file)

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("video fps: %d, frame_count: %d" % (fps, frame_count))

        video_out_name = 'output' if self.file_name is None else self.file_name
        out_path = video_out_name + "_output.mp4"
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 0

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
        if self.do_entrance_counting or self.do_break_in_counting or self.illegal_parking_time != -1:
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                assert len(
                    self.region_polygon
                ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'

                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

        video_fps = fps

        video_action_imgs = []

        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

        object_in_region_info = {
        }  # store info for vehicle parking in region       
        illegal_parking_dict = None

        while (1):
            if frame_id % 10 == 0:
                print('Thread: {}; frame id: {}'.format(thread_idx, frame_id))

            ret, frame = capture.read()
            if not ret:
                break
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()

            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['mot'].start()

                mot_skip_frame_num = self.mot_predictor.skip_frame_num
                reuse_det_result = False
                if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
                    reuse_det_result = True
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame_rgb)],
                    visual=False,
                    reuse_det_result=reuse_det_result)

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['mot'].end()
                    self.pipe_timer.track_num += len(mot_res['boxes'])

                if frame_id % 10 == 0:
                    print("Thread: {}; trackid number: {}".format(
                        thread_idx, len(mot_res['boxes'])))

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result,
                    self.secs_interval,
                    self.do_entrance_counting,
                    self.do_break_in_counting,
                    self.region_type,
                    video_fps,
                    entrance,
                    id_set,
                    interval_id_set,
                    in_id_list,
                    out_id_list,
                    prev_center,
                    records,
                    ids2names=self.mot_predictor.pred_config.labels)
                records = statistic['records']

                if self.illegal_parking_time != -1:
                    object_in_region_info, illegal_parking_dict = update_object_info(
                        object_in_region_info, mot_result, self.region_type,
                        entrance, video_fps, self.illegal_parking_time)
                    if len(illegal_parking_dict) != 0:
                        # build relationship between id and plate
                        for key, value in illegal_parking_dict.items():
                            plate = self.collector.get_carlp(key)
                            illegal_parking_dict[key]['plate'] = plate

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id,
                                                  fps, entrance, records,
                                                  center_traj)  # visualize
                        if len(self.pushurl) > 0:
                            pushstream.pipe.stdin.write(im.tobytes())
                        else:
                            writer.write(im)
                            if self.file_name is None:  # use camera_id
                                cv2.imshow('Paddle-Pipeline', im)
                                if cv2.waitKey(1) & 0xFF == ord('q'):
                                    break
                    continue

                self.pipeline_res.update(mot_res, 'mot')
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                    frame_rgb, mot_res)

                if self.with_human_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

                if self.with_idbased_detaction:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)

                if self.with_idbased_clsaction:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)

                if self.with_skeleton_action:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()

                    self.pipeline_res.update(kpt_res, 'kpt')

                    self.kpt_buff.update(kpt_res,
                                         mot_res)  # collect kpt output
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

                    skeleton_action_res = {}
                    if state:
                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time['skeleton_action'].end(
                            )
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')

                    if self.cfg['visual']:
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                        frame_rgb, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()

                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')

            if self.with_video_action:
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
                    # Scale image
                    scaled_img = scale(frame_rgb)
                    video_action_imgs.append(scaled_img)

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {
                        "class": classes[0],
                        "score": scores[0]
                    }
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip

            self.collector.append(frame_id, self.pipeline_res)

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
                _, _, fps = self.pipe_timer.get_total_time()

                im = self.visualize_video(frame, self.pipeline_res,
                                          self.collector, frame_id, fps,
                                          entrance, records, center_traj,
                                          self.illegal_parking_time != -1,
                                          illegal_parking_dict)  # visualize
                if len(self.pushurl) > 0:
                    pushstream.pipe.stdin.write(im.tobytes())
                else:
                    writer.write(im)
        if self.cfg['visual'] and len(self.pushurl) == 0:
            writer.release()

        return out_path

    def visualize_video(self,
                        image,
                        result,
                        collector,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None,
                        do_illegal_parking_recognition=False,
                        illegal_parking_dict=None):
        mot_res = copy.deepcopy(result.get('mot'))
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
            scores = mot_res['boxes'][:, 2]
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
            scores = np.zeros([0])

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
                ids2names=self.mot_predictor.pred_config.labels,
                do_entrance_counting=self.do_entrance_counting,
                do_break_in_counting=self.do_break_in_counting,
                do_illegal_parking_recognition=do_illegal_parking_recognition,
                illegal_parking_dict=illegal_parking_dict,
                entrance=entrance,
                records=records,
                center_traj=center_traj)

        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

        video_action_res = result.get('video_action')
        if video_action_res is not None:
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
            image = visualize_action(
                image,
                mot_boxes,
                action_visual_collector=None,
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")

        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(
                self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

        return image

    def visualize_image(self, images, result):

        det_res = result.get('det')
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')
        vehicleplate_res = result.get('vehicleplate')

        if det_res is not None:
            det_res_i = {}
            boxes_num_i = det_res['boxes_num'][0]
            det_res_i['boxes'] = det_res['boxes'][0:0 + boxes_num_i, :]
            im = visualize_box_mask(
                images[0],
                det_res_i,
                labels=['target'],
                threshold=self.cfg['crop_thresh'])
            im = np.ascontiguousarray(np.copy(im))
            im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
        if human_attr_res is not None:
            human_attr_res_i = human_attr_res['output'][0:0 + boxes_num_i]
            im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])

        return im


def pp_humanv2(input_date, avtivity_list):

    paddle.enable_static()

    # parse params from command
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    cfg = merge_cfg(FLAGS)  # use command params to update config

    if isinstance(input_date, str):
        FLAGS.video_file = input_date
    else:
        FLAGS.image_file = input_date
    FLAGS.avtivity_list = avtivity_list

    pipeline = Pipeline(FLAGS, cfg)
    out = pipeline.run_multithreads()

    return out