train.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
H
Hongyu Liu 已提交
22 23 24
import random

import math
25 26 27 28 29

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
H
Hongyu Liu 已提交
30 31 32 33 34 35 36 37

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
import os
38 39

from args import *
H
Hongyu Liu 已提交
40 41 42 43 44 45
from base_model import BaseModel
from attention_model import AttentionModel
import logging
import pickle

SEED = 123
46 47 48 49 50


def train():
    args = parse_args()

H
Hongyu Liu 已提交
51 52 53 54 55 56 57 58
    num_layers = args.num_layers
    src_vocab_size = args.src_vocab_size
    tar_vocab_size = args.tar_vocab_size
    batch_size = args.batch_size
    dropout = args.dropout
    init_scale = args.init_scale
    max_grad_norm = args.max_grad_norm
    hidden_size = args.hidden_size
59 60
    # Training process

H
Hongyu Liu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    if args.attention:
        model = AttentionModel(
            hidden_size,
            src_vocab_size,
            tar_vocab_size,
            batch_size,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
    else:
        model = BaseModel(
            hidden_size,
            src_vocab_size,
            tar_vocab_size,
            batch_size,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)

    loss = model.build_graph()
81 82
    # clone from default main program and use it as the validation program
    main_program = fluid.default_main_program()
H
Hongyu Liu 已提交
83 84 85 86 87 88 89 90 91 92 93
    inference_program = fluid.default_main_program().clone(for_test=True)

    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(
        clip_norm=max_grad_norm))

    lr = args.learning_rate
    opt_type = args.optimizer
    if opt_type == "sgd":
        optimizer = fluid.optimizer.SGD(lr)
    elif opt_type == "adam":
        optimizer = fluid.optimizer.Adam(lr)
94
    else:
H
Hongyu Liu 已提交
95 96
        print("only support [sgd|adam]")
        raise Exception("opt type not support")
97

H
Hongyu Liu 已提交
98
    optimizer.minimize(loss)
99

Y
Yibing Liu 已提交
100
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
101 102 103
    exe = Executor(place)
    exe.run(framework.default_startup_program())

H
Hongyu Liu 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    train_data_prefix = args.train_data_prefix
    eval_data_prefix = args.eval_data_prefix
    test_data_prefix = args.test_data_prefix
    vocab_prefix = args.vocab_prefix
    src_lang = args.src_lang
    tar_lang = args.tar_lang
    print("begin to load data")
    raw_data = reader.raw_data(src_lang, tar_lang, vocab_prefix,
                               train_data_prefix, eval_data_prefix,
                               test_data_prefix, args.max_len)
    print("finished load data")
    train_data, valid_data, test_data, _ = raw_data

    def prepare_input(batch, epoch_id=0, with_lr=True):
        src_ids, src_mask, tar_ids, tar_mask = batch
        res = {}
        src_ids = src_ids.reshape((src_ids.shape[0], src_ids.shape[1], 1))
        in_tar = tar_ids[:, :-1]
        label_tar = tar_ids[:, 1:]

        in_tar = in_tar.reshape((in_tar.shape[0], in_tar.shape[1], 1))
        label_tar = label_tar.reshape(
            (label_tar.shape[0], label_tar.shape[1], 1))

        res['src'] = src_ids
        res['tar'] = in_tar
        res['label'] = label_tar
        res['src_sequence_length'] = src_mask
        res['tar_sequence_length'] = tar_mask

        return res, np.sum(tar_mask)

    # get train epoch size
    def eval(data, epoch_id=0):
        eval_data_iter = reader.get_data_iter(data, batch_size, mode='eval')
139
        total_loss = 0.0
H
Hongyu Liu 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        word_count = 0.0
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed, word_num = prepare_input(
                batch, epoch_id, with_lr=False)
            fetch_outs = exe.run(inference_program,
                                 feed=input_data_feed,
                                 fetch_list=[loss.name],
                                 use_program_cache=False)

            cost_train = np.array(fetch_outs[0])

            total_loss += cost_train * batch_size
            word_count += word_num

        ppl = np.exp(total_loss / word_count)

        return ppl

    max_epoch = args.max_epoch
    for epoch_id in range(max_epoch):
        start_time = time.time()
        print("epoch id", epoch_id)
        train_data_iter = reader.get_data_iter(train_data, batch_size)

        total_loss = 0
        word_count = 0.0
        for batch_id, batch in enumerate(train_data_iter):

            input_data_feed, word_num = prepare_input(batch, epoch_id=epoch_id)
            fetch_outs = exe.run(feed=input_data_feed,
                                 fetch_list=[loss.name],
                                 use_program_cache=True)

            cost_train = np.array(fetch_outs[0])

            total_loss += cost_train * batch_size
            word_count += word_num

            if batch_id > 0 and batch_id % 100 == 0:
                print("ppl", batch_id, np.exp(total_loss / word_count))
                total_loss = 0.0
                word_count = 0.0

        dir_name = args.model_path + "/epoch_" + str(epoch_id)
        print("begin to save", dir_name)
        fluid.io.save_params(exe, dir_name)
        print("save finished")
        dev_ppl = eval(valid_data)
        print("dev ppl", dev_ppl)
        test_ppl = eval(test_data)
        print("test ppl", test_ppl)
191 192 193 194


if __name__ == '__main__':
    train()