run_pretrain_single.py 11.7 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections
import itertools
import os
import random
import time
import h5py
from functools import partial
import numpy as np
import distutils.util

import paddle
from paddle.io import DataLoader, Dataset
from paddlenlp.transformers import BertForPretraining, BertModel, BertPretrainingCriterion
29 30
from paddlenlp.transformers import ErnieForPretraining, ErnieModel, ErniePretrainingCriterion
from paddlenlp.transformers import BertTokenizer, ErnieTokenizer
Z
Zeyu Chen 已提交
31 32
from data import create_data_holder, create_pretraining_dataset

33 34 35 36
MODEL_CLASSES = {
    "bert": (BertForPretraining, BertTokenizer),
    "ernie": (ErnieForPretraining, ErnieTokenizer)
}
Z
Zeyu Chen 已提交
37 38 39 40


def parse_args():
    parser = argparse.ArgumentParser()
41 42 43 44 45
    parser.add_argument(
        "--select_device",
        default="gpu",
        type=str,
        help="The device that selecting for the training, must be gpu/xpu.")
Z
Zeyu Chen 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()), )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
            ], [])), )
    parser.add_argument(
        "--input_dir",
        default=None,
        type=str,
        required=True,
        help="The input directory where the data will be read from.", )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--max_predictions_per_seq",
        default=80,
        type=int,
        help="The maximum total of masked tokens in input sequence")

    parser.add_argument(
        "--batch_size",
        default=8,
        type=int,
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--adam_epsilon",
        default=1e-8,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Log every X updates steps.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--seed", type=int, default=42, help="Random seed for initialization")
    parser.add_argument(
        "--use_amp",
        type=distutils.util.strtobool,
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--enable_addto",
        type=distutils.util.strtobool,
        default=False,
        help="Whether to enable the addto strategy for gradient accumulation or not. This is only used for AMP training."
    )
    parser.add_argument(
        "--scale_loss",
        type=float,
        default=1.0,
        help="The value of scale_loss for fp16.")
    args = parser.parse_args()
    return args


148 149 150
def build_compiled_program(args, main_program, loss):
    if args.select_device == "xpu":
        return main_program
Z
Zeyu Chen 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    exec_strategy = paddle.static.ExecutionStrategy()
    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10000
    build_strategy = paddle.static.BuildStrategy()
    build_strategy.enable_addto = args.enable_addto
    main_program = paddle.static.CompiledProgram(
        main_program).with_data_parallel(
            loss_name=loss.name,
            exec_strategy=exec_strategy,
            build_strategy=build_strategy)
    return main_program


def reset_program_state_dict(model, state_dict):
    scale = model.initializer_range if hasattr(model, "initializer_range")\
        else model.bert.config["initializer_range"]

    new_state_dict = dict()
    for n, p in state_dict.items():
        if "layer_norm" not in p.name:
            dtype_str = "float32"
            if str(p.dtype) == "VarType.FP64":
                dtype_str = "float64"
            new_state_dict[p.name] = np.random.normal(
                loc=0.0, scale=scale, size=p.shape).astype(dtype_str)
    return new_state_dict


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


def do_train(args):
    # Initialize the paddle execute enviroment
    paddle.enable_static()
188
    place = paddle.set_device(args.select_device)
Z
Zeyu Chen 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

    # Set the random seed
    set_seed(args.seed)

    # Define the input data in the static mode
    main_program = paddle.static.default_main_program()
    startup_program = paddle.static.default_startup_program()
    data_holders = create_data_holder(args)
    [
        input_ids, segment_ids, input_mask, masked_lm_positions,
        masked_lm_labels, next_sentence_labels, masked_lm_scale
    ] = data_holders

    # Define the model structure in static mode
    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    config = model_class.pretrained_init_configuration[args.model_name_or_path]
    if config["vocab_size"] % 8 != 0:
        config["vocab_size"] += 8 - (config["vocab_size"] % 8)
    model = BertForPretraining(BertModel(**config))
    criterion = BertPretrainingCriterion(model.bert.config["vocab_size"])
    prediction_scores, seq_relationship_score = model(
        input_ids=input_ids,
        token_type_ids=segment_ids,
        attention_mask=input_mask,
        masked_positions=masked_lm_positions)
    loss = criterion(prediction_scores, seq_relationship_score,
                     masked_lm_labels, next_sentence_labels, masked_lm_scale)

    # Define the dynamic learing_reate scheduler and optimizer
    lr_scheduler = paddle.optimizer.lr.LambdaDecay(
        args.learning_rate,
        lambda current_step, num_warmup_steps=args.warmup_steps,
        num_training_steps=args.max_steps if args.max_steps > 0 else
        (len(train_data_loader) * args.num_train_epochs): float(
            current_step) / float(max(1, num_warmup_steps))
        if current_step < num_warmup_steps else max(
            0.0,
            float(num_training_steps - current_step) / float(
                max(1, num_training_steps - num_warmup_steps))))

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])
    if args.use_amp:
        amp_list = paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
242
            custom_white_list=['layer_norm', 'softmax', 'gelu'])
Z
Zeyu Chen 已提交
243 244 245 246
        optimizer = paddle.fluid.contrib.mixed_precision.decorate(
            optimizer,
            amp_list,
            init_loss_scaling=args.scale_loss,
247
            use_dynamic_loss_scaling=True)
Z
Zeyu Chen 已提交
248 249 250 251 252 253 254 255 256 257 258
    optimizer.minimize(loss)

    # Define the Executor for running the static model
    exe = paddle.static.Executor(place)
    exe.run(startup_program)
    state_dict = model.state_dict()

    # Use the state dict to update the parameter
    reset_state_dict = reset_program_state_dict(model, state_dict)
    paddle.static.set_program_state(main_program, reset_state_dict)
    # Construct the compiled program
259
    main_program = build_compiled_program(args, main_program, loss)
Z
Zeyu Chen 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    global_step = 0
    tic_train = time.time()
    epoch = 0
    while True:
        files = [
            os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir)
            if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in
            f
        ]
        files.sort()
        random.Random(args.seed + epoch).shuffle(files)

        for f_id in range(0, len(files)):
            train_data_loader, _ = create_pretraining_dataset(
                files[f_id], args.max_predictions_per_seq, args, data_holders)
275 276 277 278
            train_reader_cost = 0.0
            train_run_cost = 0.0
            total_samples = 0
            reader_start = time.time()
Z
Zeyu Chen 已提交
279
            for step, batch in enumerate(train_data_loader):
280
                train_reader_cost += time.time() - reader_start
Z
Zeyu Chen 已提交
281
                global_step += 1
282
                train_start = time.time()
Z
Zeyu Chen 已提交
283 284 285
                loss_return = exe.run(main_program,\
                    feed=batch,
                    fetch_list=[loss])
286 287
                train_run_cost += time.time() - train_start
                total_samples += args.batch_size
Z
Zeyu Chen 已提交
288 289 290 291
                # In the new 2.0 api, must call this function to change the learning_rate
                lr_scheduler.step()
                if global_step % args.logging_steps == 0:
                    print(
292 293 294 295 296 297 298 299 300 301 302
                        "global step: %d, epoch: %d, batch: %d, loss: %f, "
                        "avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec"
                        %
                        (global_step, epoch, step, loss_return[0],
                         train_reader_cost / args.logging_steps,
                         (train_reader_cost + train_run_cost) /
                         args.logging_steps, total_samples / args.logging_steps,
                         total_samples / (train_reader_cost + train_run_cost)))
                    train_reader_cost = 0.0
                    train_run_cost = 0.0
                    total_samples = 0
Z
Zeyu Chen 已提交
303 304 305 306 307 308 309 310 311
                if global_step % args.save_steps == 0:
                    output_dir = os.path.join(args.output_dir,
                                              "model_%d" % global_step)
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    # TODO(fangzeyang): Udpate the save_params to paddle.static
                    paddle.fluid.io.save_params(exe, output_dir)
                    tokenizer.save_pretrained(output_dir)
                if global_step >= args.max_steps:
312
                    reader_start = time.time()
Z
Zeyu Chen 已提交
313 314
                    del train_data_loader
                    return
315
                reader_start = time.time()
Z
Zeyu Chen 已提交
316 317 318 319 320 321 322
            del train_data_loader
        epoch += 1


if __name__ == "__main__":
    args = parse_args()
    do_train(args)