inference_model.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24
import logging
import os
import six
import sys
import time

import numpy as np
import paddle
import paddle.fluid as fluid

G
Guo Sheng 已提交
25 26
from utils.input_field import InputField
from utils.configure import PDConfig
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

# include task-specific libs
import desc
import reader
from transformer import create_net


def init_from_pretrain_model(args, exe, program):

    assert isinstance(args.init_from_pretrain_model, str)

    if not os.path.exists(args.init_from_pretrain_model):
        raise Warning("The pretrained params do not exist.")
        return False

    def existed_params(var):
        if not isinstance(var, fluid.framework.Parameter):
            return False
        return os.path.exists(
            os.path.join(args.init_from_pretrain_model, var.name))

    fluid.io.load_vars(
        exe,
        args.init_from_pretrain_model,
        main_program=program,
        predicate=existed_params)

    print("finish initing model from pretrained params from %s" %
          (args.init_from_pretrain_model))

    return True


def init_from_params(args, exe, program):

    assert isinstance(args.init_from_params, str)

    if not os.path.exists(args.init_from_params):
        raise Warning("the params path does not exist.")
        return False

    fluid.io.load_params(
        executor=exe,
        dirname=args.init_from_params,
        main_program=program,
        filename="params.pdparams")

    print("finish init model from params from %s" % (args.init_from_params))

    return True


def do_save_inference_model(args):
    if args.use_cuda:
        dev_count = fluid.core.get_cuda_device_count()
        place = fluid.CUDAPlace(0)
    else:
        dev_count = int(os.environ.get('CPU_NUM', 1))
        place = fluid.CPUPlace()

    test_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():

            # define input and reader

            input_field_names = desc.encoder_data_input_fields + desc.fast_decoder_data_input_fields
            input_slots = [{
                "name": name,
                "shape": desc.input_descs[name][0],
                "dtype": desc.input_descs[name][1]
            } for name in input_field_names]

            input_field = InputField(input_slots)
            input_field.build(build_pyreader=True)

            # define the network

            predictions = create_net(
                is_training=False, model_input=input_field, args=args)
            out_ids, out_scores = predictions

    # This is used here to set dropout to the test mode.
    test_prog = test_prog.clone(for_test=True)

    # prepare predicting

    ## define the executor and program for training

    exe = fluid.Executor(place)

    exe.run(startup_prog)
    assert (args.init_from_params) or (args.init_from_pretrain_model)

    if args.init_from_params:
        init_from_params(args, exe, test_prog)

    elif args.init_from_pretrain_model:
        init_from_pretrain_model(args, exe, test_prog)

    # saving inference model

    fluid.io.save_inference_model(
        args.inference_model_dir,
        feeded_var_names=input_field_names,
        target_vars=[out_ids, out_scores],
        executor=exe,
        main_program=test_prog,
        model_filename="model.pdmodel",
        params_filename="params.pdparams")

    print("save inference model at %s" % (args.inference_model_dir))


if __name__ == "__main__":
    args = PDConfig(yaml_file="./transformer.yaml")
    args.build()
    args.Print()

    do_save_inference_model(args)