introduction_en.ipynb 3.8 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "7aa268f7",
   "metadata": {},
   "source": [
    "# German BERT\n",
    "![bert_image](https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png)\n",
    "## Overview\n",
    "**Language model:** bert-base-cased\n",
    "**Language:** German\n",
    "**Training data:** Wiki, OpenLegalData, News (~ 12GB)\n",
    "**Eval data:** Conll03 (NER), GermEval14 (NER), GermEval18 (Classification), GNAD (Classification)\n",
    "**Infrastructure**: 1x TPU v2\n",
    "**Published**: Jun 14th, 2019\n",
    "\n",
    "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f407e80e",
   "metadata": {},
   "source": [
    "**Update April 3rd, 2020**: we updated the vocabulary file on deepset's s3 to conform with the default tokenization of punctuation tokens.\n",
    "For details see the related [FARM issue](https://github.com/deepset-ai/FARM/issues/60). If you want to use the old vocab we have also uploaded a deepset/bert-base-german-cased-oldvocab model.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "18d2ad8e",
   "metadata": {},
   "source": [
    "## How to use"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b80052bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install --upgrade paddlenlp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ea9d4e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "import paddle\n",
    "from paddlenlp.transformers import AutoModel\n",
    "\n",
    "model = AutoModel.from_pretrained(\"bert-base-german-cased\")\n",
    "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
    "print(model(input_ids))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9d560e75",
   "metadata": {},
   "source": [
    "## Authors\n",
    "- Branden Chan: `branden.chan [at] deepset.ai`\n",
    "- Timo Möller: `timo.moeller [at] deepset.ai`\n",
    "- Malte Pietsch: `malte.pietsch [at] deepset.ai`\n",
    "- Tanay Soni: `tanay.soni [at] deepset.ai`\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0e43273",
   "metadata": {},
   "source": [
    "## About us\n",
    "![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1b05e60",
   "metadata": {},
   "source": [
    "We bring NLP to the industry via open source!\n",
    "Our focus: Industry specific language models & large scale QA systems.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5196bee9",
   "metadata": {},
   "source": [
    "Some of our work:\n",
    "- [German BERT (aka \"bert-base-german-cased\")](https://deepset.ai/german-bert)\n",
    "- [FARM](https://github.com/deepset-ai/FARM)\n",
    "- [Haystack](https://github.com/deepset-ai/haystack/)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "18fe01d5",
   "metadata": {},
   "source": [
    "Get in touch:\n",
    "[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)\n",
    "\n",
    "> The model introduction and model weights originate from  https://huggingface.co/bert-base-german-cased  and were converted to PaddlePaddle format for ease of use in PaddleNLP."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}