introduction_en.ipynb 3.2 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "c5180cf2",
   "metadata": {},
   "source": [
    "# bert-base-NER\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dbf08fd8",
   "metadata": {},
   "source": [
    "## Model description\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "11690dda",
   "metadata": {},
   "source": [
    "**bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "738f98db",
   "metadata": {},
   "source": [
    "Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "03c5db03",
   "metadata": {},
   "source": [
    "If you'd like to use a larger BERT-large model fine-tuned on the same dataset, a **bert-large-NER** version is also available.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "da040b29",
   "metadata": {},
   "source": [
    "## How to use\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "726ee6e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install --upgrade paddlenlp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "73564a0c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import paddle\n",
    "from paddlenlp.transformers import AutoModel\n",
    "\n",
    "model = AutoModel.from_pretrained(\"dslim/bert-base-NER\")\n",
    "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
    "print(model(input_ids))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c08bc233",
   "metadata": {},
   "source": [
    "## Citation\n",
    "\n",
    "```\n",
    "@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,\n",
    "title = \"Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition\",\n",
    "author = \"Tjong Kim Sang, Erik F.  and\n",
    "De Meulder, Fien\",\n",
    "booktitle = \"Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003\",\n",
    "year = \"2003\",\n",
    "url = \"https://www.aclweb.org/anthology/W03-0419\",\n",
    "pages = \"142--147\",\n",
    "}\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a56e1055",
   "metadata": {},
   "source": [
    "> The model introduction and model weights originate from [https://huggingface.co/dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}