introduction_en.ipynb 2.6 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "74b2ba5f",
   "metadata": {},
   "source": [
    "# Cross-Encoder for Quora Duplicate Questions Detection\n",
    "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "36bf7390",
   "metadata": {},
   "source": [
    "## Training Data\n",
    "This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1 how likely the two given questions are duplicates.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5aa29571",
   "metadata": {},
   "source": [
    "Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions \"How to learn Java\" and \"How to learn Python\" will result in a rahter low score, as these are not duplicates.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1fe76310",
   "metadata": {},
   "source": [
    "## Usage and Performance\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e7067bef",
   "metadata": {},
   "source": [
    "Pre-trained models can be used like this:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a9ea7b3d",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install --upgrade paddlenlp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b30bfcd4",
   "metadata": {},
   "outputs": [],
   "source": [
    "import paddle\n",
    "from paddlenlp.transformers import AutoModel\n",
    "\n",
    "model = AutoModel.from_pretrained(\"cross-encoder/quora-roberta-base\")\n",
    "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
    "print(model(input_ids))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ecb795de",
   "metadata": {},
   "source": [
    "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/quora-roberta-base](https://huggingface.co/cross-encoder/quora-roberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}