introduction_cn.ipynb 2.5 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f11c50a6",
   "metadata": {},
   "source": [
    "# Cross-Encoder for Natural Language Inference\n",
    "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e01fe90a",
   "metadata": {},
   "source": [
    "## Training Data\n",
    "The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff850419",
   "metadata": {},
   "source": [
    "## Performance\n",
    "For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0b92b0d",
   "metadata": {},
   "source": [
    "## Usage\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d3857388",
   "metadata": {},
   "source": [
    "Pre-trained models can be used like this:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d2c99a51",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install --upgrade paddlenlp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aeda53c1",
   "metadata": {},
   "outputs": [],
   "source": [
    "import paddle\n",
    "from paddlenlp.transformers import AutoModel\n",
    "\n",
    "model = AutoModel.from_pretrained(\"cross-encoder/nli-MiniLM2-L6-H768\")\n",
    "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
    "print(model(input_ids))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "760a7b59",
   "metadata": {},
   "source": [
    "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768](https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768),并转换为飞桨模型格式。\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}