train_and_evaluate.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
from __future__ import print_function

import os
import sys
import time
import argparse
import unittest
import contextlib
import numpy as np

import paddle.fluid as fluid
import paddle.v2 as paddle

import utils, metric, configs
import models

from pretrained_word2vec import Glove840B_300D 

parser = argparse.ArgumentParser(description=__doc__)

parser.add_argument('--model_name',       type=str,   default='cdssm',                  help="Which model to train")
parser.add_argument('--config',           type=str,   default='cdssm.cdssm_base',       help="The global config setting")

DATA_DIR = os.path.join(os.path.expanduser('~'), '.cache/paddle/dataset')

def evaluate(epoch_id, exe, inference_program, dev_reader, test_reader, fetch_list, feeder, metric_type):
    """
    evaluate on test/dev dataset
    """
    def infer(test_reader):
        """
        do inference function
        """
        total_cost = 0.0
        total_count = 0
        preds, labels = [], []
        for data in test_reader():
            avg_cost, avg_acc, batch_prediction = exe.run(inference_program,
                          feed=feeder.feed(data),
                          fetch_list=fetch_list,
                          return_numpy=True)
            total_cost += avg_cost * len(data)
            total_count += len(data)
            preds.append(batch_prediction)
            labels.append(np.asarray([x[-1] for x in data], dtype=np.int64))
        y_pred = np.concatenate(preds)
        y_label = np.concatenate(labels)

        metric_res = []
        for metric_name in metric_type:
            if metric_name == 'accuracy_with_threshold':
                metric_res.append((metric_name, metric.accuracy_with_threshold(y_pred, y_label, threshold=0.3)))
            elif metric_name == 'accuracy':
                metric_res.append((metric_name, metric.accuracy(y_pred, y_label)))
            else:
                print("Unknown metric type: ", metric_name)
                exit()
        return total_cost / (total_count * 1.0), metric_res

    dev_cost, dev_metric_res = infer(dev_reader)
    print("[%s] epoch_id: %d, dev_cost: %f, " % (
                 time.asctime( time.localtime(time.time()) ),
                 epoch_id,
                 dev_cost)
               + ', '.join([str(x[0]) + ": " + str(x[1]) for x in dev_metric_res]))

    test_cost, test_metric_res = infer(test_reader)
    print("[%s] epoch_id: %d, test_cost: %f, " % (
                time.asctime( time.localtime(time.time()) ),
                epoch_id,
                test_cost)
              + ', '.join([str(x[0]) + ": " + str(x[1]) for x in test_metric_res]))
    print("")


def train_and_evaluate(train_reader,
          test_reader, 
          dev_reader,
          network,
          optimizer,
          global_config,
          pretrained_word_embedding,
          use_cuda,
          parallel):
    """
    train network
    """
    
    # define the net
    if global_config.use_lod_tensor: 
        # automatic add batch dim
        q1 = fluid.layers.data(
            name="question1", shape=[1], dtype="int64", lod_level=1)
        q2 = fluid.layers.data(
            name="question2", shape=[1], dtype="int64", lod_level=1)
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        cost, acc, prediction = network(q1, q2, label)  
    else:
        # shape: [batch_size, max_seq_len_in_batch, 1]
        q1 = fluid.layers.data(
            name="question1", shape=[-1, -1, 1], dtype="int64")
        q2 = fluid.layers.data(
            name="question2", shape=[-1, -1, 1], dtype="int64")
        # shape: [batch_size, max_seq_len_in_batch]
        mask1 = fluid.layers.data(name="mask1", shape=[-1, -1], dtype="float32")
        mask2 = fluid.layers.data(name="mask2", shape=[-1, -1], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        cost, acc, prediction = network(q1, q2, mask1, mask2, label)

    if parallel:
        # TODO: Paarallel Training
        print("Parallel Training is not supported for now.")
        sys.exit(1)

115 116 117 118 119 120 121
    #optimizer.minimize(cost)
    if use_cuda:
        print("Using GPU")
        place = fluid.CUDAPlace(0)
    else:
        print("Using CPU")
        place = fluid.CPUPlace()
122 123 124 125 126 127 128 129 130 131 132 133
    exe = fluid.Executor(place)

    if global_config.use_lod_tensor:
        feeder = fluid.DataFeeder(feed_list=[q1, q2, label], place=place)
    else:
        feeder = fluid.DataFeeder(feed_list=[q1, q2, mask1, mask2, label], place=place)

    # logging param info
    for param in fluid.default_main_program().global_block().all_parameters():
        print("param name: %s; param shape: %s" % (param.name, param.shape))
    
    # define inference_program
134 135 136 137
    inference_program = fluid.default_main_program().clone(for_test=True)

    optimizer.minimize(cost)

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    exe.run(fluid.default_startup_program())
    
    # load emb from a numpy erray
    if pretrained_word_embedding is not None:
        print("loading pretrained word embedding to param")
        embedding_name = "emb.w"
        embedding_param = fluid.global_scope().find_var(embedding_name).get_tensor()
        embedding_param.set(pretrained_word_embedding, place)
   
    evaluate(-1,
             exe,
             inference_program,
             dev_reader,
             test_reader,
             fetch_list=[cost, acc, prediction],
             feeder=feeder,
             metric_type=global_config.metric_type)

    # start training
    print("[%s] Start Training" % time.asctime(time.localtime(time.time())))
    for epoch_id in xrange(global_config.epoch_num):
        data_size, data_count, total_acc, total_cost = 0, 0, 0.0, 0.0
        batch_id = 0
        for data in train_reader():
            avg_cost_np, avg_acc_np = exe.run(fluid.default_main_program(),
                                              feed=feeder.feed(data),
                                              fetch_list=[cost, acc])
            data_size = len(data)
            total_acc += data_size * avg_acc_np
            total_cost += data_size * avg_cost_np
            data_count += data_size
            if batch_id % 100 == 0:
                print("[%s] epoch_id: %d, batch_id: %d, cost: %f, acc: %f" % (
                    time.asctime(time.localtime(time.time())),
                    epoch_id, 
                    batch_id, 
                    avg_cost_np,
                    avg_acc_np))
            batch_id += 1
        
        avg_cost = total_cost / data_count
        avg_acc = total_acc / data_count
        
        print("")
        print("[%s] epoch_id: %d, train_avg_cost: %f, train_avg_acc: %f" % (
            time.asctime( time.localtime(time.time()) ), epoch_id, avg_cost, avg_acc))

        epoch_model = global_config.save_dirname + "/" + "epoch" + str(epoch_id)
        fluid.io.save_inference_model(epoch_model, ["question1", "question2", "label"], acc, exe)    
        
        evaluate(epoch_id, 
                 exe, 
                 inference_program,
                 dev_reader,
                 test_reader, 
                 fetch_list=[cost, acc, prediction], 
                 feeder=feeder, 
                 metric_type=global_config.metric_type)

def main():
    """
    This function will parse argments, prepare data and prepare pretrained embedding
    """
    args = parser.parse_args()
    global_config = configs.__dict__[args.config]()

    print("net_name: ", args.model_name)
    net = models.__dict__[args.model_name](global_config)
    global_config.list_config()

    # get word_dict
    word_dict = utils.getDict(data_type="quora_question_pairs")

    # get reader
    train_reader, dev_reader, test_reader = utils.prepare_data(
        "quora_question_pairs",
         word_dict=word_dict,
         batch_size = global_config.batch_size,
         buf_size=800000,
         duplicate_data=global_config.duplicate_data,
         use_pad=(not global_config.use_lod_tensor))
 
    # load pretrained_word_embedding
    if global_config.use_pretrained_word_embedding:
M
mapingshuo 已提交
222 223
        word2vec = Glove840B_300D(filepath=os.path.join(DATA_DIR, "glove.840B.300d.txt"),
                                  keys=set(word_dict.keys()))
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        pretrained_word_embedding = utils.get_pretrained_word_embedding(
                                        word2vec=word2vec,
                                        word2id=word_dict,
                                        config=global_config)
        print("pretrained_word_embedding to be load:", pretrained_word_embedding)
    else:
        pretrained_word_embedding = None

    # define optimizer
    optimizer = utils.getOptimizer(global_config)

    train_and_evaluate(
                   train_reader,
                   dev_reader,
                   test_reader,
                   net,
                   optimizer,
                   global_config,
                   pretrained_word_embedding,
243
                   use_cuda=global_config.use_cuda,
244 245 246 247
                   parallel=False)

if __name__ == "__main__":
    main()