reader.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import numpy as np
import random
import json
import multiprocessing
import functools
import logging
import platform
import os

logger = logging.getLogger(__name__)

from bmn_utils import iou_with_anchors, ioa_with_anchors


class BMNReader():
    def __init__(self, mode, cfg):
        self.mode = mode
        self.tscale = cfg.MODEL.tscale  # 100
        self.dscale = cfg.MODEL.dscale  # 100
        self.anno_file = cfg.MODEL.anno_file
        self.file_list = cfg.INFER.filelist
        self.subset = cfg[mode.upper()]['subset']
        self.tgap = 1. / self.tscale
        self.feat_path = cfg.MODEL.feat_path

        self.get_dataset_dict()
        self.get_match_map()

        self.batch_size = cfg[mode.upper()]['batch_size']
        self.num_threads = cfg[mode.upper()]['num_threads']
        if (mode == 'test') or (mode == 'infer'):
            self.num_threads = 1  # set num_threads as 1 for test and infer

    def get_dataset_dict(self):
50 51
        assert (os.path.exists(self.feat_path)), "Input feature path not exists"
        assert (os.listdir(self.feat_path)), "Input feature file not exists"
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        self.video_dict = {}
        if self.mode == "infer":
            annos = json.load(open(self.file_list))
            for video_name in annos.keys():
                self.video_dict[video_name] = annos[video_name]
        else:
            annos = json.load(open(self.anno_file))
            for video_name in annos.keys():
                video_subset = annos[video_name]["subset"]
                if self.subset in video_subset:
                    self.video_dict[video_name] = annos[video_name]
        self.video_list = list(self.video_dict.keys())
        self.video_list.sort()
        print("%s subset video numbers: %d" %
              (self.subset, len(self.video_list)))

    def get_match_map(self):
        match_map = []
        for idx in range(self.tscale):
            tmp_match_window = []
            xmin = self.tgap * idx
            for jdx in range(1, self.tscale + 1):
                xmax = xmin + self.tgap * jdx
                tmp_match_window.append([xmin, xmax])
            match_map.append(tmp_match_window)
        match_map = np.array(match_map)
        match_map = np.transpose(match_map, [1, 0, 2])
        match_map = np.reshape(match_map, [-1, 2])
        self.match_map = match_map
        self.anchor_xmin = [self.tgap * i for i in range(self.tscale)]
        self.anchor_xmax = [self.tgap * i for i in range(1, self.tscale + 1)]

    def get_video_label(self, video_name):
        video_info = self.video_dict[video_name]
        video_second = video_info['duration_second']
        video_labels = video_info['annotations']

        gt_bbox = []
        gt_iou_map = []
        for gt in video_labels:
            tmp_start = max(min(1, gt["segment"][0] / video_second), 0)
            tmp_end = max(min(1, gt["segment"][1] / video_second), 0)
            gt_bbox.append([tmp_start, tmp_end])
            tmp_gt_iou_map = iou_with_anchors(
                self.match_map[:, 0], self.match_map[:, 1], tmp_start, tmp_end)
            tmp_gt_iou_map = np.reshape(tmp_gt_iou_map,
                                        [self.dscale, self.tscale])
            gt_iou_map.append(tmp_gt_iou_map)
        gt_iou_map = np.array(gt_iou_map)
        gt_iou_map = np.max(gt_iou_map, axis=0)

        gt_bbox = np.array(gt_bbox)
        gt_xmins = gt_bbox[:, 0]
        gt_xmaxs = gt_bbox[:, 1]
        gt_len_small = 3 * self.tgap
        gt_start_bboxs = np.stack(
            (gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1)
        gt_end_bboxs = np.stack(
            (gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1)

        match_score_start = []
        for jdx in range(len(self.anchor_xmin)):
            match_score_start.append(
                np.max(
                    ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[
                        jdx], gt_start_bboxs[:, 0], gt_start_bboxs[:, 1])))
        match_score_end = []
        for jdx in range(len(self.anchor_xmin)):
            match_score_end.append(
                np.max(
                    ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[
                        jdx], gt_end_bboxs[:, 0], gt_end_bboxs[:, 1])))

        gt_start = np.array(match_score_start)
        gt_end = np.array(match_score_end)
        return gt_iou_map, gt_start, gt_end

    def load_file(self, video_name):
        file_name = video_name + ".npy"
        file_path = os.path.join(self.feat_path, file_name)
        video_feat = np.load(file_path)
        video_feat = video_feat.T
        video_feat = video_feat.astype("float32")
        return video_feat

    def create_reader(self):
        """reader creator for bmn model"""
        if self.mode == 'infer':
            return self.make_infer_reader()
        if self.num_threads == 1:
            return self.make_reader()
        else:
            sysstr = platform.system()
            if sysstr == 'Windows':
                return self.make_multithread_reader()
            else:
                return self.make_multiprocess_reader()

    def make_infer_reader(self):
        """reader for inference"""

        def reader():
            batch_out = []
            for video_name in self.video_list:
                video_idx = self.video_list.index(video_name)
                video_feat = self.load_file(video_name)
                batch_out.append((video_feat, video_idx))

                if len(batch_out) == self.batch_size:
                    yield batch_out
                    batch_out = []

        return reader

    def make_reader(self):
        """single process reader"""

        def reader():
            video_list = self.video_list
            if self.mode == 'train':
                random.shuffle(video_list)

            batch_out = []
            for video_name in video_list:
                video_idx = video_list.index(video_name)
                video_feat = self.load_file(video_name)
                gt_iou_map, gt_start, gt_end = self.get_video_label(video_name)

                if self.mode == 'train' or self.mode == 'valid':
                    batch_out.append((video_feat, gt_iou_map, gt_start, gt_end))
                elif self.mode == 'test':
                    batch_out.append(
                        (video_feat, gt_iou_map, gt_start, gt_end, video_idx))
                else:
                    raise NotImplementedError('mode {} not implemented'.format(
                        self.mode))
                if len(batch_out) == self.batch_size:
                    yield batch_out
                    batch_out = []

        return reader

    def make_multithread_reader(self):
        def reader():
            if self.mode == 'train':
                random.shuffle(self.video_list)
            for video_name in self.video_list:
                video_idx = self.video_list.index(video_name)
                yield [video_name, video_idx]

        def process_data(sample, mode):
            video_name = sample[0]
            video_idx = sample[1]
            video_feat = self.load_file(video_name)
            gt_iou_map, gt_start, gt_end = self.get_video_label(video_name)
            if mode == 'train' or mode == 'valid':
                return (video_feat, gt_iou_map, gt_start, gt_end)
            elif mode == 'test':
                return (video_feat, gt_iou_map, gt_start, gt_end, video_idx)
            else:
                raise NotImplementedError('mode {} not implemented'.format(
                    mode))

        mapper = functools.partial(process_data, mode=self.mode)

        def batch_reader():
            xreader = paddle.reader.xmap_readers(mapper, reader,
                                                 self.num_threads, 1024)
            batch = []
            for item in xreader():
                batch.append(item)
                if len(batch) == self.batch_size:
                    yield batch
                    batch = []

        return batch_reader

    def make_multiprocess_reader(self):
        """multiprocess reader"""

        def read_into_queue(video_list, queue):

            batch_out = []
            for video_name in video_list:
                video_idx = video_list.index(video_name)
                video_feat = self.load_file(video_name)
                gt_iou_map, gt_start, gt_end = self.get_video_label(video_name)

                if self.mode == 'train' or self.mode == 'valid':
                    batch_out.append((video_feat, gt_iou_map, gt_start, gt_end))
                elif self.mode == 'test':
                    batch_out.append(
                        (video_feat, gt_iou_map, gt_start, gt_end, video_idx))
                else:
                    raise NotImplementedError('mode {} not implemented'.format(
                        self.mode))

                if len(batch_out) == self.batch_size:
                    queue.put(batch_out)
                    batch_out = []
            queue.put(None)

        def queue_reader():
            video_list = self.video_list
            if self.mode == 'train':
                random.shuffle(video_list)

            n = self.num_threads
            queue_size = 20
            reader_lists = [None] * n
            file_num = int(len(video_list) // n)
            for i in range(n):
                if i < len(reader_lists) - 1:
                    tmp_list = video_list[i * file_num:(i + 1) * file_num]
                else:
                    tmp_list = video_list[i * file_num:]
                reader_lists[i] = tmp_list

270 271
            manager = multiprocessing.Manager()
            queue = manager.Queue(queue_size)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
            p_list = [None] * len(reader_lists)
            for i in range(len(reader_lists)):
                reader_list = reader_lists[i]
                p_list[i] = multiprocessing.Process(
                    target=read_into_queue, args=(reader_list, queue))
                p_list[i].start()
            reader_num = len(reader_lists)
            finish_num = 0
            while finish_num < reader_num:
                sample = queue.get()
                if sample is None:
                    finish_num += 1
                else:
                    yield sample
            for i in range(len(p_list)):
                if p_list[i].is_alive():
                    p_list[i].join()

        return queue_reader