index.html 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
  <script type="text/javascript" src="../.tools/theme/marked.js">
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

<div id="context" class="container-fluid markdown-body">
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# 场景文字识别 (STR, Scene Text Recognition)

## STR任务简介

在现实生活中,包括路牌、菜单、大厦标语在内的很多场景均会有文字出现,这些场景的照片中的文字为图片场景的理解提供了更多信息,\[[1](#参考文献)\]使用深度学习模型自动识别路牌中的文字,帮助街景应用获取更加准确的地址信息。

P
peterzhang2029 已提交
49
本例将演示如何用 PaddlePaddle 完成 **场景文字识别 (STR, Scene Text Recognition)** 任务。以下图为例,给定一个场景图片,STR需要从图片中识别出对应的文字"keep"。
50 51 52 53 54 55 56 57 58

<p align="center">
<img src="./images/503.jpg"/><br/>
图 1. 数据示例 "keep"
</p>


## 使用 PaddlePaddle 训练与预测

P
peterzhang2029 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
### 安装依赖包
```bash
pip install -r requirements.txt
```

### 指定训练配置参数

通过 `config.py` 脚本修改训练和模型配置参数,脚本中有对可配置参数的详细解释,示例如下:
```python
class TrainerConfig(object):

      # Whether to use GPU in training or not.
      use_gpu = True
      # The number of computing threads.
      trainer_count = 1

      # The training batch size.
      batch_size = 10

      ...


class ModelConfig(object):

      # Number of the filters for convolution group.
      filter_num = 8

      ...
```
修改 `config.py` 对参数进行调整。例如,通过修改 `use_gpu` 参数来指定是否使用 GPU 进行训练。

90 91 92 93
### 模型训练
训练脚本 [./train.py](./train.py) 中设置了如下命令行参数:

```
P
peterzhang2029 已提交
94 95 96 97 98 99 100 101
Options:
  --train_file_list_path TEXT  The path of the file which contains path list
                               of train image files.  [required]
  --test_file_list_path TEXT   The path of the file which contains path list
                               of test image files.  [required]
  --model_save_dir TEXT        The path to save the trained models (default:
                               'models').
  --help                       Show this message and exit.
102

P
peterzhang2029 已提交
103
```
104 105 106 107 108 109

- `train_file_list` 训练数据的列表文件,每行一个路径加对应的text,具体格式为:
```
word_1.png, "PROPER"
word_2.png, "FOOD"
```
P
peterzhang2029 已提交
110 111
- `test_file_list` 测试数据的列表文件,格式同上。
- `model_save_dir` 模型参数会的保存目录目录, 默认为当前目录下的`models`目录。
112 113 114 115 116 117

### 具体执行的过程:

1.从官方网站下载数据\[[2](#参考文献)\](Task 2.3: Word Recognition (2013 edition)),会有三个文件: Challenge2_Training_Task3_Images_GT.zip、Challenge2_Test_Task3_Images.zip和 Challenge2_Test_Task3_GT.txt。
分别对应训练集的图片和图片对应的单词,测试集的图片,测试数据对应的单词,然后执行以下命令,对数据解压并移动至目标文件夹:

P
peterzhang2029 已提交
118
```bash
119 120 121 122 123 124 125
mkdir -p data/train_data
mkdir -p data/test_data
unzip Challenge2_Training_Task3_Images_GT.zip -d data/train_data
unzip Challenge2_Test_Task3_Images.zip -d data/test_data
mv Challenge2_Test_Task3_GT.txt data/test_data
```

P
peterzhang2029 已提交
126
2.获取训练数据文件夹中 `gt.txt` 的路径 (data/train_data)和测试数据文件夹中`Challenge2_Test_Task3_GT.txt`的路径(data/test_data)。
127

P
peterzhang2029 已提交
128 129 130 131 132
3.执行如下命令进行训练:
```bash
python train.py \
--train_file_list_path 'data/train_data/gt.txt' \
--test_file_list_path 'data/test_data/Challenge2_Test_Task3_GT.txt'
133
```
P
peterzhang2029 已提交
134
4.训练过程中,模型参数会自动备份到指定目录,默认会保存在 `./models` 目录下。
135 136


P
peterzhang2029 已提交
137 138 139 140 141 142 143 144 145
### 预测
预测部分由 `infer.py` 完成,使用的是最优路径解码算法,即:在每个时间步选择一个概率最大的字符。在使用过程中,需要在 `infer.py` 中指定具体的模型目录、图片固定尺寸、batch_size(默认设置为10)和图片文件的列表文件。执行如下代码:
```bash
python infer.py \
--model_path 'models/params_pass_00000.tar.gz' \
--image_shape '173,46' \
--infer_file_list_path 'data/test_data/Challenge2_Test_Task3_GT.txt'
```
即可进行预测。
146 147 148 149 150 151 152 153 154

### 其他数据集

-   [SynthText in the Wild Dataset](http://www.robots.ox.ac.uk/~vgg/data/scenetext/)(41G)
-   [ICDAR 2003 Robust Reading Competitions](http://www.iapr-tc11.org/mediawiki/index.php?title=ICDAR_2003_Robust_Reading_Competitions)

### 注意事项

- 由于模型依赖的 `warp CTC` 只有CUDA的实现,本模型只支持 GPU 运行
P
peterzhang2029 已提交
155
- 本模型参数较多,占用显存比较大,实际执行时可以调节`batch_size`控制显存占用
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
- 本模型使用的数据集较小,可以选用其他更大的数据集\[[3](#参考文献)\]来训练需要的模型

## 参考文献

1. [Google Now Using ReCAPTCHA To Decode Street View Addresses](https://techcrunch.com/2012/03/29/google-now-using-recaptcha-to-decode-street-view-addresses/)
2. [Focused Scene Text](http://rrc.cvc.uab.es/?ch=2&com=introduction)
3. [SynthText in the Wild Dataset](http://www.robots.ox.ac.uk/~vgg/data/scenetext/)

</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
        document.getElementById("markdown").innerHTML)
</script>
</body>