nets.py 4.6 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.nn as nn
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
import paddle.fluid.layers.io as io
Z
add ssr  
zhangwenhui03 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return nn.sequence_pool(input=emb, pool_type='sum')


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn", hidden_size=128):
        self.param_name = param_name
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = nn.fc(input=emb,
                    size=self.hidden_size * 3,
                    param_attr=self.param_name + "_fc.w",
                    bias_attr=False)

        gru_h = nn.dynamic_gru(
            input=fc0,
            size=self.hidden_size,
            is_reverse=False,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")
        return nn.sequence_pool(input=gru_h, pool_type='max')
D
dongdaxiang 已提交
52

D
dongdaxiang 已提交
53 54 55 56

class PairwiseHingeLoss(object):
    def __init__(self, margin=0.8):
        self.margin = margin
Z
add ssr  
zhangwenhui03 已提交
57

D
dongdaxiang 已提交
58 59 60
    def forward(self, pos, neg):
        loss_part1 = nn.elementwise_sub(
            tensor.fill_constant_batch_size_like(
Z
add ssr  
zhangwenhui03 已提交
61
                input=pos, shape=[-1, 1], value=self.margin, dtype='float32'),
D
dongdaxiang 已提交
62 63 64 65
            pos)
        loss_part2 = nn.elementwise_add(loss_part1, neg)
        loss_part3 = nn.elementwise_max(
            tensor.fill_constant_batch_size_like(
Z
add ssr  
zhangwenhui03 已提交
66
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
D
dongdaxiang 已提交
67 68 69 70 71 72
            loss_part2)
        return loss_part3


class SequenceSemanticRetrieval(object):
    """ sequence semantic retrieval model """
Z
add ssr  
zhangwenhui03 已提交
73

D
dongdaxiang 已提交
74 75 76 77 78 79 80 81
    def __init__(self, embedding_size, embedding_dim, hidden_size):
        self.embedding_size = embedding_size
        self.embedding_dim = embedding_dim
        self.emb_shape = [self.embedding_size, self.embedding_dim]
        self.hidden_size = hidden_size
        self.user_encoder = GrnnEncoder(hidden_size=hidden_size)
        self.item_encoder = BowEncoder()
        self.pairwise_hinge_loss = PairwiseHingeLoss()
Z
add ssr  
zhangwenhui03 已提交
82

D
dongdaxiang 已提交
83 84 85 86 87 88
    def get_correct(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
        correct = nn.reduce_sum(less)
        return correct

    def train(self):
Z
add ssr  
zhangwenhui03 已提交
89
        user_data = io.data(name="user", shape=[1], dtype="int64", lod_level=1)
D
dongdaxiang 已提交
90
        pos_item_data = io.data(
Z
add ssr  
zhangwenhui03 已提交
91
            name="p_item", shape=[1], dtype="int64", lod_level=1)
D
dongdaxiang 已提交
92
        neg_item_data = io.data(
Z
add ssr  
zhangwenhui03 已提交
93
            name="n_item", shape=[1], dtype="int64", lod_level=1)
D
dongdaxiang 已提交
94
        user_emb = nn.embedding(
Z
add ssr  
zhangwenhui03 已提交
95
            input=user_data, size=self.emb_shape, param_attr="emb.item")
D
dongdaxiang 已提交
96
        pos_item_emb = nn.embedding(
Z
add ssr  
zhangwenhui03 已提交
97
            input=pos_item_data, size=self.emb_shape, param_attr="emb.item")
D
dongdaxiang 已提交
98
        neg_item_emb = nn.embedding(
Z
add ssr  
zhangwenhui03 已提交
99
            input=neg_item_data, size=self.emb_shape, param_attr="emb.item")
D
dongdaxiang 已提交
100 101 102
        user_enc = self.user_encoder.forward(user_emb)
        pos_item_enc = self.item_encoder.forward(pos_item_emb)
        neg_item_enc = self.item_encoder.forward(neg_item_emb)
Z
add ssr  
zhangwenhui03 已提交
103 104 105 106 107 108 109 110 111 112 113 114
        user_hid = nn.fc(input=user_enc,
                         size=self.hidden_size,
                         param_attr='user.w',
                         bias_attr="user.b")
        pos_item_hid = nn.fc(input=pos_item_enc,
                             size=self.hidden_size,
                             param_attr='item.w',
                             bias_attr="item.b")
        neg_item_hid = nn.fc(input=neg_item_enc,
                             size=self.hidden_size,
                             param_attr='item.w',
                             bias_attr="item.b")
D
dongdaxiang 已提交
115 116 117 118 119
        cos_pos = nn.cos_sim(user_hid, pos_item_hid)
        cos_neg = nn.cos_sim(user_hid, neg_item_hid)
        hinge_loss = self.pairwise_hinge_loss.forward(cos_pos, cos_neg)
        avg_cost = nn.mean(hinge_loss)
        correct = self.get_correct(cos_neg, cos_pos)
D
dongdaxiang 已提交
120

Z
add ssr  
zhangwenhui03 已提交
121 122
        return [user_data, pos_item_data,
                neg_item_data], cos_pos, avg_cost, correct