preprocess_dense.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os, random, csv, datetime, json
import pandas as pd
import numpy as np
import argparse
import logging
import time

logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("preprocess")
logger.setLevel(logging.INFO)

TRAIN_QUERIES_PATH = "./data_set_phase1/train_queries.csv"
TRAIN_PLANS_PATH = "./data_set_phase1/train_plans.csv"
TRAIN_CLICK_PATH = "./data_set_phase1/train_clicks.csv"
PROFILES_PATH = "./data_set_phase1/profiles.csv"

OUT_DIR = "./out"
ORI_TRAIN_PATH = "train.txt"
NORM_TRAIN_PATH = "normed_train.txt"
#variable to control the ratio of positive and negative instance of transmode 0 which is original label of no click
THRESHOLD_LABEL = 0.5



O1_MIN = 115.47
O1_MAX = 117.29

O2_MIN = 39.46
O2_MAX = 40.97

D1_MIN = 115.44
D1_MAX = 117.37

D2_MIN = 39.46
D2_MAX = 40.96

DISTANCE_MIN = 1.0
DISTANCE_MAX = 225864.0
THRESHOLD_DIS = 200000.0

PRICE_MIN = 200.0
PRICE_MAX = 92300.0
THRESHOLD_PRICE = 20000

ETA_MIN = 1.0
ETA_MAX = 72992.0
THRESHOLD_ETA = 10800.0


def build_norm_feature():
    with open(os.path.join(OUT_DIR, NORM_TRAIN_PATH), 'w') as nf:
        with open(os.path.join(OUT_DIR, ORI_TRAIN_PATH), 'r') as f:
            for line in f:
                cur_map = json.loads(line)

                cur_map["plan"]["distance"] = (cur_map["plan"]["distance"] - DISTANCE_MIN) / (DISTANCE_MAX - DISTANCE_MIN)

                if cur_map["plan"]["price"]:
                    cur_map["plan"]["price"] = (cur_map["plan"]["price"] - PRICE_MIN) / (PRICE_MAX - PRICE_MIN)
                else:
                    cur_map["plan"]["price"] = 0.0

                cur_map["plan"]["eta"] = (cur_map["plan"]["eta"] - ETA_MIN) / (ETA_MAX - ETA_MIN)

                cur_json_instance = json.dumps(cur_map)
                nf.write(cur_json_instance + '\n')


def preprocess():
    """
    Construct the train data indexed by session id and mode id jointly. Convert all the raw features (user profile,
    od pair, req time, click time, eta, price, distance, transport mode) to one-hot ids used for
    embedding. We split the one-hot features into two categories: user feature and context feature for
    better understanding of FM algorithm.
    Note that the user profile is already provided by one-hot encoded form, we treat it as embedded vector
    for unity with the context feature and easily using of PaddlePaddle embedding layer. Given the
    train clicks data, we label each train instance with 1 or 0 depend on if this instance is clicked or
    not include non-click case. To Be Changed
    :return:
    """

    train_data_dict = {}

    with open("./weather.json", 'r') as f:
        weather_dict = json.load(f)

    with open(TRAIN_QUERIES_PATH, 'r') as f:
        csv_reader = csv.reader(f, delimiter=',')
        train_index_list = []
        for k, line in enumerate(csv_reader):
            if k == 0: continue
            if line[0] == "": continue
            if line[1] == "":
                train_index_list.append(line[0] + "_0")
            else:
                train_index_list.append(line[0] + "_" + line[1])

            train_index = line[0]
            train_data_dict[train_index] = {}
            train_data_dict[train_index]["pid"] = line[1]
            train_data_dict[train_index]["query"] = {}
            train_data_dict[train_index]["weather"] = {}

            reqweekday = datetime.datetime.strptime(line[2], '%Y-%m-%d %H:%M:%S').strftime("%w")
            reqhour = datetime.datetime.strptime(line[2], '%Y-%m-%d %H:%M:%S').strftime("%H")

            # weather related features, no big use, maybe more detailed weather information is better
            date_key = datetime.datetime.strptime(line[2], '%Y-%m-%d %H:%M:%S').strftime("%m-%d")
            train_data_dict[train_index]["weather"] = {}
            train_data_dict[train_index]["weather"].update({"max_temp": weather_dict[date_key]["max_temp"]})
            train_data_dict[train_index]["weather"].update({"min_temp": weather_dict[date_key]["min_temp"]})
            train_data_dict[train_index]["weather"].update({"wea": weather_dict[date_key]["weather"]})
            train_data_dict[train_index]["weather"].update({"wind": weather_dict[date_key]["wind"]})

            train_data_dict[train_index]["query"].update({"weekday":reqweekday})
            train_data_dict[train_index]["query"].update({"hour":reqhour})

            o = line[3].split(',')
            o_first = o[0]
            o_second = o[1]
            train_data_dict[train_index]["query"].update({"o1":float(o_first)})
            train_data_dict[train_index]["query"].update({"o2":float(o_second)})

            d = line[4].split(',')
            d_first = d[0]
            d_second = d[1]
            train_data_dict[train_index]["query"].update({"d1":float(d_first)})
            train_data_dict[train_index]["query"].update({"d2":float(d_second)})

    plan_map = {}
    plan_data = pd.read_csv(TRAIN_PLANS_PATH)
    for index, row in plan_data.iterrows():
        plans_str = row['plans']
        plans_list = json.loads(plans_str)
        session_id = str(row['sid'])
        # train_data_dict[session_id]["plans"] = []
        plan_map[session_id] = plans_list

    profile_map = {}
    with open(PROFILES_PATH, 'r') as f:
        csv_reader = csv.reader(f, delimiter=',')
        for k, line in enumerate(csv_reader):
            if k == 0: continue
            profile_map[line[0]] = [i for i in range(len(line)) if line[i] == "1.0"]

    session_click_map = {}
    with open(TRAIN_CLICK_PATH, 'r') as f:
        csv_reader = csv.reader(f, delimiter=',')
        for k, line in enumerate(csv_reader):
            if k == 0: continue
            if line[0] == "" or line[1] == "" or line[2] == "":
                continue
            session_click_map[line[0]] = line[2]
    #return train_data_dict, profile_map, session_click_map, plan_map
    generate_sparse_features(train_data_dict, profile_map, session_click_map, plan_map)


def generate_sparse_features(train_data_dict, profile_map, session_click_map, plan_map):
    if not os.path.isdir(OUT_DIR):
        os.mkdir(OUT_DIR)
    with open(os.path.join(OUT_DIR, ORI_TRAIN_PATH), 'w') as f_train:
        for session_id, plan_list in plan_map.items():
            if session_id not in train_data_dict:
                continue
            cur_map = train_data_dict[session_id]
            if cur_map["pid"] != "":
                cur_map["profile"] = profile_map[cur_map["pid"]]
            else:
                cur_map["profile"] = [0]
            
            #rank information related feature 
            whole_rank = 0
            for plan in plan_list:
                whole_rank += 1
                cur_map["mode_rank" + str(whole_rank)] = plan["transport_mode"]

            if whole_rank < 5:
                for r in range(whole_rank + 1, 6):
                    cur_map["mode_rank" + str(r)] = -1

            cur_map["whole_rank"] = whole_rank
            flag_click = False
            rank = 1

            price_list = []
            eta_list = []
            distance_list = []
            for plan in plan_list:
                if not plan["price"]:
                    price_list.append(0)
                else:
                    price_list.append(int(plan["price"]))
                eta_list.append(int(plan["eta"]))
                distance_list.append(int(plan["distance"]))
            price_list.sort(reverse=False)
            eta_list.sort(reverse=False)
            distance_list.sort(reverse=False)

            for plan in plan_list:
                if plan["price"] and int(plan["price"]) == price_list[0]:
                    cur_map["mode_min_price"] = plan["transport_mode"]
                if plan["price"] and int(plan["price"]) == price_list[-1]:
                    cur_map["mode_max_price"] = plan["transport_mode"]
                if int(plan["eta"]) == eta_list[0]:
                    cur_map["mode_min_eta"] = plan["transport_mode"]
                if int(plan["eta"]) == eta_list[-1]:
                    cur_map["mode_max_eta"] = plan["transport_mode"]
                if int(plan["distance"]) == distance_list[0]:
                    cur_map["mode_min_distance"] = plan["transport_mode"]
                if int(plan["distance"]) == distance_list[-1]:
                    cur_map["mode_max_distance"] = plan["transport_mode"]
            if "mode_min_price" not in cur_map:
                cur_map["mode_min_price"] = -1
            if "mode_max_price" not in cur_map:
                cur_map["mode_max_price"] = -1

            for plan in plan_list:
                if ("transport_mode" in plan) and (session_id in session_click_map) and (
                        int(plan["transport_mode"]) == int(session_click_map[session_id])):
                    flag_click = True
            if flag_click:

                for plan in plan_list:
                    cur_price = int(plan["price"]) if plan["price"] else 0
                    cur_eta = int(plan["eta"])
                    cur_distance = int(plan["distance"])
                    cur_map["price_rank"] = price_list.index(cur_price) + 1
                    cur_map["eta_rank"] = eta_list.index(cur_eta) + 1
                    cur_map["distance_rank"] = distance_list.index(cur_distance) + 1

                    if ("transport_mode" in plan) and (session_id in session_click_map) and (
                            int(plan["transport_mode"]) == int(session_click_map[session_id])):
                        cur_map["plan"] = plan
                        cur_map["label"] = 1
                    else:
                        cur_map["plan"] = plan
                        cur_map["label"] = 0

                    cur_map["plan_rank"] = rank
                    rank += 1
                    cur_json_instance = json.dumps(cur_map)
                    f_train.write(cur_json_instance + '\n')
            
            cur_map["plan"] = {}
            #since we define a new ctr task from original task, we use a basic way to generate instances of transport mode 0.
            #There should be a optimal strategy to generate instances of transport mode 0
            if not flag_click:
                cur_map["plan"]["distance"] = -1
                cur_map["plan"]["price"] = -1
                cur_map["plan"]["eta"] = -1
                cur_map["plan"]["transport_mode"] = 0
                cur_map["plan_rank"] = 0
                cur_map["price_rank"] = 0
                cur_map["eta_rank"] = 0
                cur_map["distance_rank"] = 0
                cur_map["label"] = 1
                cur_json_instance = json.dumps(cur_map)
                f_train.write(cur_json_instance + '\n')
            else:
                if random.random() < THRESHOLD_LABEL:
                    cur_map["plan"]["distance"] = -1
                    cur_map["plan"]["price"] = -1
                    cur_map["plan"]["eta"] = -1
                    cur_map["plan"]["transport_mode"] = 0
                    cur_map["plan_rank"] = 0
                    cur_map["price_rank"] = 0
                    cur_map["eta_rank"] = 0
                    cur_map["distance_rank"] = 0
                    cur_map["label"] = 0
                    cur_json_instance = json.dumps(cur_map)
                    f_train.write(cur_json_instance + '\n')



    build_norm_feature()


if __name__ == "__main__":
    preprocess()