map_reader.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import json
import paddle.fluid.incubate.data_generator as dg


class MapDataset(dg.MultiSlotDataGenerator):
    def setup(self, sparse_feature_dim):
        self.profile_length = 65
        self.dense_length = 3
        #feature names
        self.dense_feature_list = ["distance", "price", "eta"]

        self.pid_list = ["pid"]
        self.query_feature_list = ["weekday", "hour", "o1", "o2", "d1", "d2"]
        self.plan_feature_list = ["transport_mode"]
        self.rank_feature_list = ["plan_rank", "whole_rank", "price_rank", "eta_rank", "distance_rank"]
        self.rank_whole_pic_list = ["mode_rank1", "mode_rank2", "mode_rank3", "mode_rank4",
                                    "mode_rank5"]
        self.weather_feature_list = ["max_temp", "min_temp", "wea", "wind"]
        self.hash_dim = 1000001
        self.train_idx_ = 2000000
        #carefully set if you change the features 
        self.categorical_range_ = range(0, 22)

    #process one instance
    def _process_line(self, line):
        instance = json.loads(line)
        """
        profile = instance["profile"]
        len_profile = len(profile)
        if len_profile >= 10:
            user_profile_feature = profile[0:10]
        else:
            profile.extend([0]*(10-len_profile))
            user_profile_feature = profile
        
        if len(profile) > 1 or (len(profile) == 1 and profile[0] != 0):
            for p in profile:
                if p >= 1 and p <= 65:
                    user_profile_feature[p - 1] = 1
        """
        context_feature = []
        context_feature_fm = []
        dense_feature = [0] * self.dense_length
        plan = instance["plan"]
        for i, val in enumerate(self.dense_feature_list):
            dense_feature[i] = plan[val]

        if (instance["pid"] == ""):
            instance["pid"] = 0

        query = instance["query"]
        weather_dic = instance["weather"]
        for fea in self.pid_list:
            context_feature.append([hash(fea + str(instance[fea])) % self.hash_dim])
            context_feature_fm.append(hash(fea + str(instance[fea])) % self.hash_dim)
        for fea in self.query_feature_list:
            context_feature.append([hash(fea + str(query[fea])) % self.hash_dim])
            context_feature_fm.append(hash(fea + str(query[fea])) % self.hash_dim)
        for fea in self.plan_feature_list:
            context_feature.append([hash(fea + str(plan[fea])) % self.hash_dim])
            context_feature_fm.append(hash(fea + str(plan[fea])) % self.hash_dim)
        for fea in self.rank_feature_list:
            context_feature.append([hash(fea + str(instance[fea])) % self.hash_dim])
            context_feature_fm.append(hash(fea + str(instance[fea])) % self.hash_dim)
        for fea in self.rank_whole_pic_list:
            context_feature.append([hash(fea + str(instance[fea])) % self.hash_dim])
            context_feature_fm.append(hash(fea + str(instance[fea])) % self.hash_dim)
        for fea in self.weather_feature_list:
            context_feature.append([hash(fea + str(weather_dic[fea])) % self.hash_dim])
            context_feature_fm.append(hash(fea + str(weather_dic[fea])) % self.hash_dim)

        label = [int(instance["label"])]

        return dense_feature, context_feature, context_feature_fm, label

    def infer_reader(self, filelist, batch, buf_size):
        print(filelist)

        def local_iter():
            for fname in filelist:
                with open(fname.strip(), "r") as fin:
                    for line in fin:
                        dense_feature, sparse_feature, sparse_feature_fm, label = self._process_line(line)
                        yield [dense_feature] + sparse_feature + [sparse_feature_fm] + [label]

        import paddle
        batch_iter = paddle.batch(
            paddle.reader.shuffle(
                local_iter, buf_size=buf_size),
            batch_size=batch)
        return batch_iter

    #generat inputs for testing
    def test_reader(self, filelist, batch, buf_size):
        print(filelist)

        def local_iter():
            for fname in filelist:
                with open(fname.strip(), "r") as fin:
                    for line in fin:
                        dense_feature, sparse_feature, sparse_feature_fm, label = self._process_line(line)
                        yield [dense_feature] + sparse_feature + [sparse_feature_fm] + [label]

        import paddle
        batch_iter = paddle.batch(
            paddle.reader.buffered(
                local_iter, size=buf_size),
            batch_size=batch)
        return batch_iter

    #generate inputs for trainig 
    def generate_sample(self, line):
        def data_iter():
            dense_feature, sparse_feature, sparse_feature_fm, label = self._process_line(line)
            #feature_name = ["user_profile"]
            feature_name = []
            feature_name.append("dense_feature")
            for idx in self.categorical_range_:
                feature_name.append("context" + str(idx))
            feature_name.append("context_fm")
            feature_name.append("label")
            yield zip(feature_name, [dense_feature] + sparse_feature + [sparse_feature_fm] + [label])

        return data_iter


if __name__ == "__main__":
    map_dataset = MapDataset()
    map_dataset.setup(int(sys.argv[1]))
    map_dataset.run_from_stdin()