share_bottom.py 6.7 KB
Newer Older
O
overlordmax 已提交
1 2 3
import paddle.fluid as fluid
import numpy as np
import paddle
O
overlordmax 已提交
4
import os
O
overlordmax 已提交
5
import time
O
overlordmax 已提交
6
import datetime
O
overlordmax 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
import utils
from args import *

def set_zero(var_name,scope=fluid.global_scope(),place=fluid.CPUPlace(),param_type="int64"):
    """
    Set tensor of a Variable to zero.
    Args:
        var_name(str): name of Variable
        scope(Scope): Scope object, default is fluid.global_scope()
        place(Place): Place object, default is fluid.CPUPlace()
        param_type(str): param data type, default is int64
    """
    param = scope.var(var_name).get_tensor()
    param_array = np.zeros(param._get_dims()).astype(param_type)
    param.set(param_array, place)
    
def share_bottom(feature_size=499,bottom_size=117,tower_nums=2,tower_size=8):
    a_data = fluid.data(name="a", shape=[-1, feature_size], dtype="float32")
    label_income = fluid.data(name="label_income", shape=[-1, 2], dtype="float32", lod_level=0)
    label_marital = fluid.data(name="label_marital", shape=[-1, 2], dtype="float32", lod_level=0)
    
    #499*8*16 + 2*(16*8 + 8*2) = 64160 
    #64160 / (499 + 2*(8 + 8*2)) = 117
    

    bottom_output = fluid.layers.fc(input=a_data,
                                       size=bottom_size,
                                       act='relu',
                                       bias_attr=fluid.ParamAttr(learning_rate=1.0),
                                       name='bottom_output')
  
   
    # Build tower layer from bottom layer
    output_layers = []
    for index in range(tower_nums):    
        tower_layer = fluid.layers.fc(input=bottom_output,
                                   size=tower_size,
                                   act='relu',
                                   name='task_layer_' + str(index))
        output_layer = fluid.layers.fc(input=tower_layer,
                                   size=2,
                                   act='softmax',
                                   name='output_layer_' + str(index))
        output_layers.append(output_layer)

    cost_income = paddle.fluid.layers.cross_entropy(input=output_layers[0], label=label_income,soft_label = True)
    cost_marital = paddle.fluid.layers.cross_entropy(input=output_layers[1], label=label_marital,soft_label = True)
    

    label_income_1 = fluid.layers.slice(label_income, axes=[1], starts=[1], ends=[2])
    label_marital_1 = fluid.layers.slice(label_marital, axes=[1], starts=[1], ends=[2])
    
O
overlordmax 已提交
59 60 61 62 63
    pred_income = fluid.layers.clip(output_layers[0], min=1e-10, max=1.0 - 1e-10)
    pred_marital = fluid.layers.clip(output_layers[1], min=1e-10, max=1.0 - 1e-10)
    
    auc_income, batch_auc_1, auc_states_1  = fluid.layers.auc(input=pred_income, label=fluid.layers.cast(x=label_income_1, dtype='int64'))
    auc_marital, batch_auc_2, auc_states_2 = fluid.layers.auc(input=pred_marital, label=fluid.layers.cast(x=label_marital_1, dtype='int64'))
O
overlordmax 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    
    avg_cost_income = fluid.layers.mean(x=cost_income)
    avg_cost_marital = fluid.layers.mean(x=cost_marital)
    
    cost =  avg_cost_income + avg_cost_marital
    
    return [a_data,label_income,label_marital],cost,output_layers[0],output_layers[1],label_income,label_marital,auc_income,auc_marital,auc_states_1,auc_states_2



args = parse_args()
train_path = args.train_data_path
test_path = args.test_data_path
batch_size = args.batch_size
feature_size = args.feature_size
bottom_size = args.bottom_size
tower_nums = args.tower_nums
tower_size = args.tower_size
epochs = args.epochs

print("batch_size:[%d],epochs:[%d],feature_size:[%d],bottom_size:[%d],tower_nums:[%d],tower_size:[%d]"%(batch_size,epochs,feature_size,bottom_size,tower_nums,tower_size))

train_reader = utils.prepare_reader(train_path,batch_size)
test_reader = utils.prepare_reader(test_path,batch_size)
  
data_list,loss,out_1,out_2,label_1,label_2,auc_income,auc_marital,auc_states_1,auc_states_2 = share_bottom(feature_size,bottom_size,tower_nums,tower_size)     


Adam = fluid.optimizer.AdamOptimizer()
Adam.minimize(loss)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
test_program = fluid.default_main_program().clone(for_test=True)


loader = fluid.io.DataLoader.from_generator(feed_list=data_list, capacity=batch_size, iterable=True)
loader.set_sample_list_generator(train_reader, places=place)

test_loader = fluid.io.DataLoader.from_generator(feed_list=data_list, capacity=batch_size, iterable=True)
test_loader.set_sample_list_generator(test_reader, places=place)
O
overlordmax 已提交
105 106
auc_income_list = []
auc_marital_list = []
O
overlordmax 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

for epoch in range(epochs):
    begin = time.time()
    for var in auc_states_1:  # reset auc states
        set_zero(var.name,place=place)
    for var in auc_states_2:  # reset auc states
        set_zero(var.name,place=place)
    begin = time.time()
    auc_1_p = 0.0
    auc_2_p = 0.0
    loss_data =0.0
    for batch_id,train_data in enumerate(loader()):
        
        loss_data,out_income,out_marital,label_income,label_marital,auc_1_p,auc_2_p = exe.run(
                  feed=train_data,
                  fetch_list=[loss.name,out_1,out_2,label_1,label_2,auc_income,auc_marital],
                  return_numpy=True)
    
    for var in auc_states_1:  # reset auc states
        set_zero(var.name,place=place)
    for var in auc_states_2:  # reset auc states
        set_zero(var.name,place=place)    
    test_auc_1_p = 0.0
    test_auc_2_p = 0.0
    for batch_id,test_data in enumerate(test_loader()):
        
        test_out_income,test_out_marital,test_label_income,test_label_marital,test_auc_1_p,test_auc_2_p = exe.run(
                  program=test_program,
                  feed=test_data,
                  fetch_list=[out_1,out_2,label_1,label_2,auc_income,auc_marital],
                  return_numpy=True) 
O
overlordmax 已提交
138 139 140 141 142 143
    model_dir = os.path.join(args.model_dir,'epoch_' + str(epoch + 1), "checkpoint")
    main_program = fluid.default_main_program()
    fluid.io.save(main_program,model_dir)
    
    auc_income_list.append(test_auc_1_p)
    auc_marital_list.append(test_auc_2_p)
O
overlordmax 已提交
144
    end = time.time()
O
overlordmax 已提交
145 146 147 148 149 150 151
    time_stamp = datetime.datetime.now()
    print("%s,- INFO - epoch_id: %d,epoch_time: %.5f s,loss: %.5f,train_auc_income: %.5f,train_auc_marital: %.5f,test_auc_income: %.5f,test_auc_marital: %.5f"%
    (time_stamp.strftime('%Y-%m-%d %H:%M:%S'),epoch,end - begin,loss_data,auc_1_p,auc_2_p,test_auc_1_p,test_auc_2_p))
    
time_stamp = datetime.datetime.now()
print("%s,- INFO - mean_sb_test_auc_income: %.5f,mean_sb_test_auc_marital %.5f,max_sb_test_auc_income: %.5f,max_sb_test_auc_marital %.5f"%(
    time_stamp.strftime('%Y-%m-%d %H:%M:%S'),np.mean(auc_income_list),np.mean(auc_marital_list),np.max(auc_income_list),np.max(auc_marital_list)))    
O
overlordmax 已提交
152 153 154 155 156 157 158 159