data_preparation.py 4.1 KB
Newer Older
O
overlordmax 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
import pandas as pd
import numpy as np
import paddle.fluid as fluid
from args import *


def fun1(x):
    if x == ' 50000+.':
        return 1
    else:
        return 0


def fun2(x):
    if x == ' Never married':
        return 1
    else:
        return 0


O
overlordmax 已提交
21
def data_preparation(train_path, test_path, train_data_path, test_data_path):
O
overlordmax 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    # The column names are from
    # https://www2.1010data.com/documentationcenter/prod/Tutorials/MachineLearningExamples/CensusIncomeDataSet.html
    column_names = [
        'age', 'class_worker', 'det_ind_code', 'det_occ_code', 'education',
        'wage_per_hour', 'hs_college', 'marital_stat', 'major_ind_code',
        'major_occ_code', 'race', 'hisp_origin', 'sex', 'union_member',
        'unemp_reason', 'full_or_part_emp', 'capital_gains', 'capital_losses',
        'stock_dividends', 'tax_filer_stat', 'region_prev_res',
        'state_prev_res', 'det_hh_fam_stat', 'det_hh_summ', 'instance_weight',
        'mig_chg_msa', 'mig_chg_reg', 'mig_move_reg', 'mig_same',
        'mig_prev_sunbelt', 'num_emp', 'fam_under_18', 'country_father',
        'country_mother', 'country_self', 'citizenship', 'own_or_self',
        'vet_question', 'vet_benefits', 'weeks_worked', 'year', 'income_50k'
    ]

    # Load the dataset in Pandas
    train_df = pd.read_csv(
        train_path,
        delimiter=',',
        header=None,
        index_col=None,
        names=column_names)
    other_df = pd.read_csv(
        test_path,
        delimiter=',',
        header=None,
        index_col=None,
        names=column_names)

    # First group of tasks according to the paper
    label_columns = ['income_50k', 'marital_stat']

    # One-hot encoding categorical columns
    categorical_columns = [
        'class_worker', 'det_ind_code', 'det_occ_code', 'education',
        'hs_college', 'major_ind_code', 'major_occ_code', 'race', 'hisp_origin',
        'sex', 'union_member', 'unemp_reason', 'full_or_part_emp',
        'tax_filer_stat', 'region_prev_res', 'state_prev_res',
        'det_hh_fam_stat', 'det_hh_summ', 'mig_chg_msa', 'mig_chg_reg',
        'mig_move_reg', 'mig_same', 'mig_prev_sunbelt', 'fam_under_18',
        'country_father', 'country_mother', 'country_self', 'citizenship',
        'vet_question'
    ]
    train_raw_labels = train_df[label_columns]
    other_raw_labels = other_df[label_columns]
    transformed_train = pd.get_dummies(train_df, columns=categorical_columns)
    transformed_other = pd.get_dummies(other_df, columns=categorical_columns)

    # Filling the missing column in the other set
    transformed_other[
        'det_hh_fam_stat_ Grandchild <18 ever marr not in subfamily'] = 0
    # get label
    transformed_train['income_50k'] = transformed_train['income_50k'].apply(
        lambda x: fun1(x))
    transformed_train['marital_stat'] = transformed_train['marital_stat'].apply(
        lambda x: fun2(x))
    transformed_other['income_50k'] = transformed_other['income_50k'].apply(
        lambda x: fun1(x))
    transformed_other['marital_stat'] = transformed_other['marital_stat'].apply(
        lambda x: fun2(x))
    # Split the other dataset into 1:1 validation to test according to the paper
    validation_indices = transformed_other.sample(
        frac=0.5, replace=False, random_state=1).index
    test_indices = list(set(transformed_other.index) - set(validation_indices))
    validation_data = transformed_other.iloc[validation_indices]
    test_data = transformed_other.iloc[test_indices]

    cols = transformed_train.columns.tolist()
    cols.insert(0, cols.pop(cols.index('income_50k')))
    cols.insert(0, cols.pop(cols.index('marital_stat')))
    transformed_train = transformed_train[cols]
    test_data = test_data[cols]
    validation_data = validation_data[cols]

    print(transformed_train.shape, transformed_other.shape,
          validation_data.shape, test_data.shape)
    transformed_train.to_csv(train_data_path + 'train_data.csv', index=False)
    test_data.to_csv(test_data_path + 'test_data.csv', index=False)


args = data_preparation_args()
data_preparation(args.train_path, args.test_path, args.train_data_path,
O
overlordmax 已提交
104
                 args.test_data_path)