train.py 8.9 KB
Newer Older
S
shuluoshu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""main """

import os
import sys
import time
import shutil
import argparse
import ast
import logging
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.framework as framework
from models import *
from utils import *

sys.path.append(os.getcwd())
from data.m3drpn_reader import M3drpnReader
import lib.core as core
from lib.rpn_util import *
import pdb

from easydict import EasyDict as edict
import paddle
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
import math
from lib.loss.rpn_3d import *
import time

logging.root.handlers = []
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)


def parse_args():
    """parse"""
    parser = argparse.ArgumentParser("M3D-RPN train script")
    parser.add_argument(
        "--use_data_parallel",  # TODO
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to use data parallel mode to train the model."
    )
    parser.add_argument(
        '--backbone',
        type=str,
        default='DenseNet121',
        help='backbone model to train, default DenseNet121')
    parser.add_argument(
        '--conf', type=str, default='kitti_3d_multi_main', help='config')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='default use gpu.')
    parser.add_argument(
        '--data_dir', type=str, default='dataset', help='dataset directory')
    parser.add_argument(
        '--save_dir',
        type=str,
        default='output',
        help='directory name to save train snapshoot')
    parser.add_argument(
        '--resume',
        type=str,
        default=None,
        help='path to resume training based on previous checkpoints. '
        'None for not resuming any checkpoints.')
    parser.add_argument(
        '--log_interval',
        type=int,
        default=1,
        help='mini-batch interval for logging.')
    parser.add_argument(
        '--ce',
        action='store_true',
        help='The flag indicating whether to run the task '
        'for continuous evaluation.')
    args = parser.parse_args()
    return args


def train():
    """main train"""
    args = parse_args()

    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)

    assert args.backbone in ['DenseNet121'], "--backbone unsupported"

    # conf init
    conf = core.init_config(args.conf)
    paths = core.init_training_paths(args.conf)
    tracker = edict()
    start_iter = 0
    start_time = time.time()

    # get reader and anchor
    m3drpn_reader = M3drpnReader(conf, args.data_dir)
    epoch = (conf.max_iter / (m3drpn_reader.len / conf.batch_size)) + 1
    train_reader = m3drpn_reader.get_reader(conf.batch_size, mode='train')
    generate_anchors(conf, m3drpn_reader.data['train'], paths.output)
    compute_bbox_stats(conf, m3drpn_reader.data['train'], paths.output)
    pickle_write(os.path.join(paths.output, 'conf.pkl'), conf)

    # train
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)

    with fluid.dygraph.guard(place):
        if args.ce:
            print("ce mode")
            seed = 33
            np.random.seed(seed)
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()

        # -----------------------------------------
        # network and loss
        # -----------------------------------------

        # training network
        train_model, optimizer = core.init_training_model(conf, args.backbone,
                                                          paths.output)

        # setup loss
        criterion_det = RPN_3D_loss(conf)

        if args.use_data_parallel:
            train_model = fluid.dygraph.parallel.DataParallel(train_model,
                                                              strategy)

        if args.use_data_parallel:
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)

        total_batch_num = 0

        for epo in range(int(epoch)):

            total_loss = 0.0
            total_acc1 = 0.0

            total_sample = 0

            for batch_id, data in enumerate(train_reader()):

                batch_start = time.time()

                images = np.array([x[0].reshape(3, 512, 1760)
                                   for x in data]).astype('float32')
                imobjs = np.array([x[1] for x in data])

                if len(np.array([x[1] for x in data])) != conf.batch_size:
                    continue

                img = to_variable(images)

                cls, prob, bbox_2d, bbox_3d, feat_size = train_model(img)

                # # loss
                det_loss, det_stats = criterion_det(cls, prob, bbox_2d, bbox_3d,
                                                    imobjs, feat_size)

                total_loss = det_loss
                stats = det_stats

                # backprop
                if total_loss > 0:
                    if args.use_data_parallel:
                        total_loss = train_model.scale_loss(total_loss)
                        total_loss.backward()
                        train_model.apply_collective_grads()
                    else:
                        total_loss.backward()

                    # batch skip, simulates larger batches by skipping gradient step
                    if (not 'batch_skip' in conf) or (
                        (batch_id + 1) % conf.batch_skip) == 0:
                        optimizer.minimize(total_loss)
                        optimizer.clear_gradients()

                batch_end = time.time()
                train_batch_cost = batch_end - batch_start

                # keep track of stats
                compute_stats(tracker, stats)

                # -----------------------------------------
                # display
                # -----------------------------------------
                iteration = epo * (m3drpn_reader.len / conf.batch_size
                                   ) + batch_id

                if iteration % conf.display == 0 and iteration > start_iter:
                    # log results
                    log_stats(tracker, iteration, start_time, start_iter,
                              conf.max_iter)
                    print( "epoch %d | batch step %d | iter %d, batch cost: %.5f, loss %0.3f" % \
                           (epo, batch_id, iteration, train_batch_cost, total_loss.numpy()))

                    # reset tracker
                    tracker = edict()

                # snapshot, do_test 
                if iteration % conf.snapshot_iter == 0 and iteration > start_iter:
                    fluid.save_dygraph(
                        train_model.state_dict(),
                        '{}/iter{}_params'.format(paths.weights, iteration))
                    fluid.save_dygraph(
                        optimizer.state_dict(),
                        '{}/iter{}_opt'.format(paths.weights, iteration))

                    #do test
                    if conf.do_test:
                        train_model.phase = "eval"
                        train_model.eval()
                        results_path = os.path.join(paths.results,
                                                    'results_{}'.format((epo)))
                    if conf.test_protocol.lower() == 'kitti':
                        results_path = os.path.join(results_path, 'data')
                        mkdir_if_missing(results_path, delete_if_exist=True)
                        test_kitti_3d(conf.dataset_test, train_model, conf,
                                      results_path, paths.data)
                    train_model.phase = "train"
                    train_model.train()


if __name__ == '__main__':

    train()
    """
    
    if args.resume:
        if not os.path.isdir(args.resume):
            assert os.path.exists("{}.pdparams".format(args.resume)), \
                    "Given resume weight {}.pdparams not exist.".format(args.resume)
            assert os.path.exists("{}.pdopt".format(args.resume)), \
                    "Given resume optimizer state {}.pdopt not exist.".format(args.resume)
        fluid.load(train_prog, args.resume, exe)
        
    """