train.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
import os
import time
import yaml
import logging
import argparse
import numpy as np
from pprint import pprint
from attrdict import AttrDict

import paddle
import paddle.nn as nn
import paddle.distributed as dist

from mem_transformer import MemTransformerLM
from reader import get_lm_vocab, get_lm_data_loader

FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config",
        default="./configs/enwik8.yaml",
        type=str,
        help="Path of the config file. ")
    args = parser.parse_args()
    return args


def do_train(args):
    if args.use_gpu:
        rank = dist.get_rank()
        trainer_count = dist.get_world_size()
    else:
        rank = 0
        trainer_count = 1

    if trainer_count > 1:
        dist.init_parallel_env()

    random_seed = eval(str(args.random_seed))
    if random_seed is not None:
        paddle.seed(random_seed)

    vocab = get_lm_vocab(args)
    train_loader = get_lm_data_loader(args, vocab, "train")
    eval_loader = get_lm_data_loader(args, vocab, "valid")

    cutoffs, tie_projs = [], [False]
    if args.adaptive:
        assert args.dataset in ['wt103', 'lm1b']
        if args.dataset == 'wt103':
            cutoffs = [20000, 40000, 200000]
            tie_projs += [True] * len(cutoffs)
        elif args.dataset == 'lm1b':
            cutoffs = [60000, 100000, 640000]
            tie_projs += [False] * len(cutoffs)

    mem_transformer = MemTransformerLM(
        args.ntokens,
        args.n_layer,
        args.n_head,
        args.d_model,
        args.d_head,
        args.d_inner_hid,
        args.dropout,
        args.attn_dropout,
        tie_weight=args.tie_weight,
        d_embed=args.d_model,
        div_val=args.div_val,
        tie_projs=tie_projs,
        normalize_before=args.normalize_before,
        tgt_len=args.tgt_len,
        ext_len=args.ext_len,
        mem_len=args.mem_len,
        cutoffs=cutoffs,
        same_length=args.same_length,
        attn_type=args.attn_type,
        clamp_len=args.clamp_len,
        sample_softmax=args.sample_softmax)

    if args.scheduler == 'cosine':
        scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
            learning_rate=args.learning_rate,
            T_max=args.max_step,
            eta_min=args.eta_min)
    elif args.scheduler == 'noam':
        scheduler = paddle.optimizer.lr.NoamDecay(
            d_model=args.d_model,
            warmup_steps=args.warmup_steps,
            learning_rate=args.learning_rate)
    elif args.scheduler == 'dev_perf':
        # fluid api
        scheduler = paddle.fluid.dygraph.ReduceLROnPlateau(
            learning_rate=args.learning_rate,
            decay_rate=args.decay_rate,
            patience=args.patience,
            min_lr=args.lr_min)
    elif args.scheduler == 'constant':
        scheduler = args.learning_rate

    clip = paddle.nn.ClipGradByGlobalNorm(args.clip)
    if args.optim.lower() == 'momentum':
        optimizer = paddle.optimizer.Momentum(
            learning_rate=scheduler,
            parameters=mem_transformer.parameters(),
            momentum=args.mom,
            grad_clip=clip)
    elif args.optim.lower() == 'adam':
        optimizer = paddle.optimizer.Adam(
            learning_rate=scheduler,
            parameters=mem_transformer.parameters(),
            beta1=args.beta1,
            beta2=args.beta2,
            epsilon=eval(args.eps),
            grad_clip=clip)
    elif args.optim.lower() == 'adagrad':
        optimizer = paddle.optimizer.Adagrad(
            learning_rate=scheduler,
            parameters=mem_transformer.parameters(),
            grad_clip=clip)

    # Init from some checkpoint, to resume the previous training
    if args.init_from_checkpoint:
        model_dict = paddle.load(
            os.path.join(args.init_from_checkpoint, "mem_transformer.pdparams"))
        opt_dict = paddle.load(
            os.path.join(args.init_from_checkpoint, "mem_transformer.pdopt"))
        mem_transformer.set_state_dict(model_dict)
        optimizer.set_state_dict(opt_dict)
        print("loaded from checkpoint.")
    # Init from some pretrain models, to better solve the current task
    if args.init_from_pretrain_model:
        model_dict = paddle.load(
            os.path.join(args.init_from_pretrain_model,
                         "mem_transformer.pdparams"))
        mem_transformer.set_state_dict(model_dict)
        print("loaded from pre-trained model.")

    if trainer_count > 1:
        mem_transformer = paddle.DataParallel(mem_transformer)

    step_idx = 0
    train_loss = 0.0

    log_start_time = time.time()

    for pass_id in range(args.epoch):
        batch_id = 0

        mems = tuple()
        for input_data in train_loader:
            (src, target, seq_len) = input_data
            ret = mem_transformer(src, target, *mems)
            loss = ret[0]
            mems = ret[1:]
            train_loss += loss.numpy()

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()

            if step_idx > 0 and step_idx % args.print_step == 0 and rank == 0:
                cur_loss = train_loss / args.print_step
                elapsed = time.time() - log_start_time
                if args.scheduler == "constant":
                    lr = optimizer.get_lr()
                else:
                    lr = scheduler.get_lr()
                logger_info = "step_idx: %d, epoch: %d, batch: %d, learning rate: %.8f, " \
                              "speed: %f ms/batch, loss: %f" % \
                              (step_idx, pass_id, batch_id, lr,
                               elapsed * 1000.0 / args.print_step, cur_loss)
                if args.dataset in ["enwik8", "text8"]:
                    logger_info = logger_info + ", bpc: %f" % (cur_loss /
                                                               np.log(2))
                else:
                    logger_info = logger_info + ", ppl: %f" % (np.exp(cur_loss))

                logger.info(logger_info)
                train_loss = 0.0
                log_start_time = time.time()

            if step_idx % args.save_step == 0 and step_idx != 0:
                # Do validation. 
                mem_transformer.eval()

                # TODO(FrostML): simplify this.
                if args.mem_len == 0:
                    if dist.get_world_size() == 1:
                        mem_transformer.reset_length(
                            tgt_len=args.eval_tgt_len,
                            ext_len=args.ext_len + args.tgt_len -
                            args.eval_tgt_len,
                            mem_len=args.mem_len)
                    else:
                        mem_transformer._layers.reset_length(
                            tgt_len=args.eval_tgt_len,
                            ext_len=args.ext_len + args.tgt_len -
                            args.eval_tgt_len,
                            mem_len=args.mem_len)
                else:
                    if dist.get_world_size() == 1:
                        mem_transformer.reset_length(
                            tgt_len=args.eval_tgt_len,
                            ext_len=args.ext_len,
                            mem_len=args.mem_len + args.tgt_len -
                            args.eval_tgt_len)
                    else:
                        mem_transformer._layers.reset_length(
                            tgt_len=args.eval_tgt_len,
                            ext_len=args.ext_len,
                            mem_len=args.mem_len + args.tgt_len -
                            args.eval_tgt_len)

                total_len, total_loss = 0, 0.

                eval_mems = tuple()
                with paddle.no_grad():
                    for i, (src, target, seq_len) in enumerate(eval_loader):
                        if args.max_eval_steps > 0 and i >= args.max_eval_steps:
                            break
                        ret = mem_transformer(src, target, *eval_mems)
                        loss, eval_mems = ret[0], ret[1:]
                        seq_len = seq_len.numpy()
                        eval_cur_loss = seq_len * loss.numpy()
                        total_loss += eval_cur_loss
                        total_len += seq_len
                    eval_loss = total_loss / total_len

                logger_info = "Validation, step_idx: %d, validation loss: %f" % \
                            (step_idx, eval_loss)
                if args.dataset in ['enwik8', 'text8']:
                    logger_info = logger_info + ", bpc: %f" % (eval_loss /
                                                               np.log(2))
                else:
                    logger_info = logger_info + ", ppl: %f" % (np.exp(eval_loss)
                                                               )
                logger.info(logger_info)

                if args.save_model and rank == 0:
245 246 247
                    model_dir = os.path.join(
                        args.save_model,
                        "step_" + str(step_idx) + "_" + str(eval_loss))
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
                    if not os.path.exists(model_dir):
                        os.makedirs(model_dir)
                    paddle.save(
                        mem_transformer.state_dict(),
                        os.path.join(model_dir, "mem_transformer.pdparams"))
                    paddle.save(
                        optimizer.state_dict(),
                        os.path.join(model_dir, "mem_transformer.pdopt"))

                if args.scheduler == 'dev_perf':
                    scheduler.step(eval_loss)

                # TODO(FrostML): simplify this.
                if dist.get_world_size() == 1:
                    mem_transformer.reset_length(
                        tgt_len=args.tgt_len,
                        ext_len=args.ext_len,
                        mem_len=args.mem_len)
                else:
                    mem_transformer._layers.reset_length(
                        tgt_len=args.tgt_len,
                        ext_len=args.ext_len,
                        mem_len=args.mem_len)

                mem_transformer.train()

            step_idx += 1
            batch_id += 1
            if args.scheduler in ['cosine', 'dev_perf']:
                if step_idx < args.warmup_steps:
                    curr_lr = args.learning_rate * step_idx / args.warmup_steps
                    scheduler.base_lr = curr_lr
                else:
                    if args.scheduler == 'cosine':
                        scheduler.step()
            elif args.scheduler == 'constant':
                if step_idx < args.warmup_steps:
                    curr_lr = args.learning_rate * step_idx / args.warmup_steps
                    optimizer.set_lr(curr_lr)
            elif args.scheduler == 'noam':
                scheduler.step()
        if step_idx >= args.max_step:
            break

    if args.save_model and rank == 0:
        model_dir = os.path.join(args.save_model, "step_final")
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.save(mem_transformer.state_dict(),
                    os.path.join(model_dir, "mem_transformer.pdparams"))
        paddle.save(optimizer.state_dict(),
                    os.path.join(model_dir, "mem_transformer.pdopt"))


if __name__ == "__main__":
    ARGS = parse_args()
    yaml_file = ARGS.config
    with open(yaml_file, 'rt') as f:
        args = AttrDict(yaml.safe_load(f))
        pprint(args)

    do_train(args)