eval.py 3.1 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# -*- coding: UTF-8 -*-
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import ast
import math
import argparse

import paddle
import numpy as np
K
kinghuin 已提交
23 24
from paddlenlp.data import Pad, Tuple, Stack
from paddlenlp.metrics import ChunkEvaluator
Z
Zeyu Chen 已提交
25

K
kinghuin 已提交
26 27
from data import LacDataset
from model import BiGruCrf
Z
Zeyu Chen 已提交
28 29 30

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
K
kinghuin 已提交
31 32 33 34 35 36 37
parser.add_argument("--root", type=str, default=None, help="The folder where the dataset is located.")
parser.add_argument("--init_checkpoint", type=str, default=None, help="Path to init model.")
parser.add_argument("--batch_size", type=int, default=300, help="The number of sequences contained in a mini-batch.")
parser.add_argument("--max_seq_len", type=int, default=64, help="Number of words of the longest seqence.")
parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="If set, use GPU for training.")
parser.add_argument("--emb_dim", type=int, default=128, help="The dimension in which a word is embedded.")
parser.add_argument("--hidden_size", type=int, default=128, help="The number of hidden nodes in the GRU layer.")
Z
Zeyu Chen 已提交
38 39 40 41 42 43 44 45
args = parser.parse_args()
# yapf: enable


def evaluate(args):
    place = paddle.CUDAPlace(0) if args.use_gpu else paddle.CPUPlace()
    paddle.set_device("gpu" if args.use_gpu else "cpu")

K
kinghuin 已提交
46 47 48 49 50 51 52
    # create dataset.
    test_dataset = LacDataset(args.root, mode='test')
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=0),  # word_ids
        Stack(),  # length
        Pad(axis=0, pad_val=0),  # label_ids
    ): fn(samples)
Z
Zeyu Chen 已提交
53 54 55 56 57 58 59 60 61 62 63 64

    # Create sampler for dataloader
    test_sampler = paddle.io.BatchSampler(
        dataset=test_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=True)
    test_loader = paddle.io.DataLoader(
        dataset=test_dataset,
        batch_sampler=test_sampler,
        places=place,
        return_list=True,
K
kinghuin 已提交
65
        collate_fn=batchify_fn)
Z
Zeyu Chen 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    # Define the model network and metric evaluator
    network = BiGruCrf(args.emb_dim, args.hidden_size, test_dataset.vocab_size,
                       test_dataset.num_labels)
    model = paddle.Model(network)
    chunk_evaluator = ChunkEvaluator(
        int(math.ceil((test_dataset.num_labels + 1) / 2.0)),
        "IOB")  # + 1 for SOS and EOS
    model.prepare(None, None, chunk_evaluator)

    # Load the model and start predicting
    model.load(args.init_checkpoint)
    model.evaluate(
        eval_data=test_loader,
        batch_size=args.batch_size,
        log_freq=100,
        verbose=2, )


if __name__ == '__main__':
    args = parser.parse_args()
    evaluate(args)