se_resnext.py 5.5 KB
Newer Older
W
wangmeng28 已提交
1
import os
Y
ying 已提交
2

W
wangmeng28 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import reader


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) / 2,
        groups=groups,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(input=conv, act=act)


def squeeze_excitation(input, num_channels, reduction_ratio):
    pool = fluid.layers.pool2d(
        input=input, pool_size=0, pool_type='avg', global_pooling=True)
Y
ying 已提交
25 26 27 28 29 30
    squeeze = fluid.layers.fc(input=pool,
                              size=num_channels / reduction_ratio,
                              act='relu')
    excitation = fluid.layers.fc(input=squeeze,
                                 size=num_channels,
                                 act='sigmoid')
W
wangmeng28 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
    return scale


def shortcut(input, ch_out, stride):
    ch_in = input.shape[1]
    if ch_in != ch_out:
        return conv_bn_layer(input, ch_out, 3, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters,
        filter_size=3,
        stride=stride,
        groups=cardinality,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
    scale = squeeze_excitation(
        input=conv2,
        num_channels=num_filters * 2,
        reduction_ratio=reduction_ratio)

    short = shortcut(input, num_filters * 2, stride)

    return fluid.layers.elementwise_add(x=short, y=scale, act='relu')


def SE_ResNeXt(input, class_dim, infer=False):
    cardinality = 64
    reduction_ratio = 16
    depth = [3, 8, 36, 3]
    num_filters = [128, 256, 512, 1024]

    conv = conv_bn_layer(
        input=input, num_filters=64, filter_size=3, stride=2, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
    conv = conv_bn_layer(
        input=conv, num_filters=128, filter_size=3, stride=1, act='relu')
    conv = fluid.layers.pool2d(
        input=conv, pool_size=3, pool_stride=2, pool_type='max')

    for block in range(len(depth)):
        for i in range(depth[block]):
            conv = bottleneck_block(
                input=conv,
                num_filters=num_filters[block],
                stride=2 if i == 0 and block != 0 else 1,
                cardinality=cardinality,
                reduction_ratio=reduction_ratio)

    pool = fluid.layers.pool2d(
        input=conv, pool_size=0, pool_type='avg', global_pooling=True)
    if not infer:
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
    else:
        drop = pool
    out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
    return out


def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
    class_dim = 1000
    image_shape = [3, 224, 224]

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    out = SE_ResNeXt(input=image, class_dim=class_dim)

    cost = fluid.layers.cross_entropy(input=out, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate / batch_size,
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(1e-4 * batch_size))
    opts = optimizer.minimize(avg_cost)
    accuracy = fluid.evaluator.Accuracy(input=out, label=label)

    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        test_accuracy = fluid.evaluator.Accuracy(input=out, label=label)
        test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
        inference_program = fluid.io.get_inference_program(test_target)

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_reader = paddle.batch(datareader.train(), batch_size=batch_size)
    test_reader = paddle.batch(datareader.test(), batch_size=batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    for pass_id in range(num_passes):
        accuracy.reset(exe)
        for batch_id, data in enumerate(train_reader()):
Y
ying 已提交
135 136 137
            loss, acc = exe.run(fluid.default_main_program(),
                                feed=feeder.feed(data),
                                fetch_list=[avg_cost] + accuracy.metrics)
W
wangmeng28 已提交
138 139 140 141 142 143
            print("Pass {0}, batch {1}, loss {2}, acc {3}".format(
                pass_id, batch_id, loss[0], acc[0]))
        pass_acc = accuracy.eval(exe)

        test_accuracy.reset(exe)
        for data in test_reader():
Y
ying 已提交
144 145 146
            out, acc = exe.run(inference_program,
                               feed=feeder.feed(data),
                               fetch_list=[avg_cost] + test_accuracy.metrics)
W
wangmeng28 已提交
147 148 149 150 151 152 153 154 155 156
        test_pass_acc = test_accuracy.eval(exe)
        print("End pass {0}, train_acc {1}, test_acc {2}".format(
            pass_id, pass_acc, test_pass_acc))

        model_path = os.path.join(model_save_dir, str(pass_id))
        fluid.io.save_inference_model(model_path, ['image'], [out], exe)


if __name__ == '__main__':
    train(learning_rate=0.1, batch_size=7, num_passes=100)