reader.py 3.5 KB
Newer Older
W
wangmeng28 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import os
import random
import functools
import numpy as np
import paddle.v2 as paddle
from PIL import Image, ImageEnhance

random.seed(0)

_R_MEAN = 123.0
_G_MEAN = 117.0
_B_MEAN = 104.0

DATA_DIM = 224

THREAD = 8
BUF_SIZE = 1024

DATA_DIR = 'ILSVRC2012'
TRAIN_LIST = 'ILSVRC2012/train_list.txt'
TEST_LIST = 'ILSVRC2012/test_list.txt'

img_mean = np.array([_R_MEAN, _G_MEAN, _B_MEAN]).reshape((3, 1, 1))


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = random.randint(0, width - size)
        h_start = random.randint(0, height - size)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


49 50 51 52 53 54
def rotate_image(img):
    angle = random.randint(-10, 10)
    img = img.rotate(angle)
    return img


W
wangmeng28 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def distort_color(img):
    def random_brightness(img, lower=0.5, upper=1.5):
        e = random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)

    def random_contrast(img, lower=0.5, upper=1.5):
        e = random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)

    def random_color(img, lower=0.5, upper=1.5):
        e = random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
    random.shuffle(ops)

    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)

    return img


def process_image(sample, mode):
    img_path = sample[0]

    img = Image.open(img_path)
    if mode == 'train':
        img = resize_short(img, DATA_DIM + 32)
84
        img = rotate_image(img)
W
wangmeng28 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    else:
        img = resize_short(img, DATA_DIM)
    img = crop_image(img, target_size=DATA_DIM, center=(mode != 'train'))
    if mode == 'train':
        img = distort_color(img)
        if random.randint(0, 1) == 1:
            img = img.transpose(Image.FLIP_LEFT_RIGHT)

    if img.mode != 'RGB':
        img = img.convert('RGB')

    img = np.array(img).astype('float32').transpose((2, 0, 1))
    img -= img_mean

    if mode == 'train' or mode == 'test':
        return img, sample[1]
    elif mode == 'infer':
        return img


def _reader_creator(file_list, mode, shuffle=False):
    def reader():
        with open(file_list) as flist:
            lines = [line.strip() for line in flist]
            if shuffle:
                random.shuffle(lines)
            for line in lines:
                if mode == 'train' or mode == 'test':
                    img_path, label = line.split()
                    img_path = os.path.join(DATA_DIR, img_path)
                    yield img_path, int(label)
                elif mode == 'infer':
                    img_path = os.path.join(DATA_DIR, line)
                    yield [img_path]

    mapper = functools.partial(process_image, mode=mode)

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def train():
    return _reader_creator(TRAIN_LIST, 'train', shuffle=True)


def test():
    return _reader_creator(TEST_LIST, 'test', shuffle=False)


def infer(file_list):
    return _reader_creator(file_list, 'infer', shuffle=False)