ltr_trainer.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
import os
from collections import OrderedDict

from ltr.trainers import BaseTrainer
from ltr.admin.stats import AverageMeter, StatValue
from ltr.admin.tensorboard import TensorboardWriter
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
import time
import numpy as np

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import sys
import signal


# handle terminate reader process, do not print stack frame
def _reader_quit(signum, frame):
    print("Reader process exit.")
    sys.exit()


def _term_group(sig_num, frame):
    print('pid {} terminated, terminate group '
          '{}...'.format(os.getpid(), os.getpgrp()))
    os.killpg(os.getpgid(os.getpid()), signal.SIGKILL)


signal.signal(signal.SIGTERM, _reader_quit)
signal.signal(signal.SIGINT, _term_group)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

class LTRTrainer(BaseTrainer):
    def __init__(self, actor, loaders, optimizer, settings, lr_scheduler=None):
        """
        args:
            actor - The actor for training the network
            loaders - list of dataset loaders, e.g. [train_loader, val_loader]. In each epoch, the trainer runs one
                        epoch for each loader.
            optimizer - The optimizer used for training, e.g. Adam
            settings - Training settings
            lr_scheduler - Learning rate scheduler
        """
        super().__init__(actor, loaders, optimizer, settings, lr_scheduler)

        self._set_default_settings()

        # Initialize statistics variables
        self.stats = OrderedDict({loader.name: None for loader in self.loaders})

        # Initialize tensorboard
        tensorboard_writer_dir = os.path.join(self.settings.env.tensorboard_dir,
                                              self.settings.project_path)
        self.tensorboard_writer = TensorboardWriter(tensorboard_writer_dir,
                                                    [l.name for l in loaders])

    def _set_default_settings(self):
        # Dict of all default values
        default = {'print_interval': 10, 'print_stats': None, 'description': ''}

        for param, default_value in default.items():
            if getattr(self.settings, param, None) is None:
                setattr(self.settings, param, default_value)

    def cycle_dataset(self, loader):
        """Do a cycle of training or validation."""
        if loader.training:
            self.actor.train()
        else:
            self.actor.eval()

        self._init_timing()

        for i, data in enumerate(loader, 1):
            # get inputs
            data = self.to_variable(data)
            data['epoch'] = self.epoch
            data['settings'] = self.settings

            # forward pass
            loss, stats = self.actor(data)

            # backward pass and update weights
            if loader.training:
                loss.backward()
                apply_collective_grads = getattr(self.actor.net,
                                                 "apply_collective_grads", None)
                if callable(apply_collective_grads):
                    apply_collective_grads()
                self.optimizer.minimize(loss)
                self.actor.net.clear_gradients()

            # update statistics
            batch_size = data['train_images'].shape[loader.stack_dim]
            self._update_stats(stats, batch_size, loader)

            self._print_stats(i, loader, batch_size)

            if i % loader.__len__() == 0:
                self.save_checkpoint()
                self._stats_new_epoch()
                self._write_tensorboard()
                return

    def to_variable(self, data_dict):
        keys = data_dict.keys()
        for k in keys:
            if k != "dataset":
                data_dict[k] = dygraph.to_variable(
                    np.array(data_dict[k]).astype(np.float32))
        return data_dict

    def to_array(self, data_dict):
        keys = data_dict.keys()
        for k in keys:
            if k != "dataset":
                data_dict[k] = data_dict[k].numpy()
        return data_dict

    def train_epoch(self):
        """Do one epoch for each loader."""
        for loader in self.loaders:
            if self.epoch % loader.epoch_interval == 0:
                self.cycle_dataset(loader)

        self._stats_new_epoch()
        self._write_tensorboard()
        print('{}th epoch train / eval done!'.format(self.epoch))

    def _init_timing(self):
        self.num_frames = 0
        self.start_time = time.time()
        self.prev_time = self.start_time

    def _update_stats(self, new_stats: OrderedDict, batch_size, loader):
        # Initialize stats if not initialized yet
        if loader.name not in self.stats.keys() or self.stats[
                loader.name] is None:
            self.stats[loader.name] = OrderedDict(
                {name: AverageMeter()
                 for name in new_stats.keys()})

        for name, val in new_stats.items():
            if name not in self.stats[loader.name].keys():
                self.stats[loader.name][name] = AverageMeter()
            self.stats[loader.name][name].update(val, batch_size)

    def _print_stats(self, i, loader, batch_size):
        self.num_frames += batch_size
        current_time = time.time()
        batch_fps = batch_size / (current_time - self.prev_time)
        average_fps = self.num_frames / (current_time - self.start_time)
        self.prev_time = current_time
        if i % self.settings.print_interval == 0 or i == loader.__len__():
            print_str = '[%s: %d, %d / %d] ' % (loader.name, self.epoch, i,
                                                loader.__len__())
            print_str += 'FPS: %.1f (%.1f)  ,  ' % (average_fps, batch_fps)
            for name, val in self.stats[loader.name].items():
                if (self.settings.print_stats is None or
                        name in self.settings.print_stats) and hasattr(val,
                                                                       'avg'):
                    print_str += '%s: %.5f  ,  ' % (name, val.avg)
            print_str += '%s: %.5f  ,  ' % ("time", batch_size / batch_fps *
                                            self.settings.print_interval)
165 166
            if loader.training:
                print_str += '%s: %f  ,  ' % ("lr", self.optimizer.current_step_lr())
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
            print(print_str[:-5])

    def _stats_new_epoch(self):
        for loader_stats in self.stats.values():
            if loader_stats is None:
                continue
            for stat_value in loader_stats.values():
                if hasattr(stat_value, 'new_epoch'):
                    stat_value.new_epoch()

    def _write_tensorboard(self):
        if self.epoch == 1:
            self.tensorboard_writer.write_info(self.settings.module_name,
                                               self.settings.script_name,
                                               self.settings.description)

        self.tensorboard_writer.write_epoch(self.stats, self.epoch)
        print('{}/{}'.format(self.settings.module_name,
                             self.settings.script_name))