Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
f5cbe6d0
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f5cbe6d0
编写于
3月 22, 2020
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update model.load to use skip_mismatch.
上级
a7d677e5
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
65 addition
and
105 deletion
+65
-105
model.py
model.py
+65
-105
未找到文件。
model.py
浏览文件 @
f5cbe6d0
...
@@ -17,8 +17,9 @@ from __future__ import absolute_import
...
@@ -17,8 +17,9 @@ from __future__ import absolute_import
import
inspect
import
inspect
import
os
import
os
import
pickle
import
pickle
import
six
import
numpy
as
np
import
numpy
as
np
import
six
import
warnings
from
collections
import
Iterable
from
collections
import
Iterable
from
collections
import
OrderedDict
from
collections
import
OrderedDict
...
@@ -192,46 +193,23 @@ class StaticGraphAdapter(object):
...
@@ -192,46 +193,23 @@ class StaticGraphAdapter(object):
_save
(
optim
,
optim_path
)
_save
(
optim
,
optim_path
)
def
load
(
self
,
path
,
reset_optimizer
=
False
,
parameters
=
[]):
def
load
(
self
,
param_state_pairs
,
optim_state
):
def
_load
(
path
):
if
not
os
.
path
.
exists
(
path
):
return
with
open
(
path
,
'rb'
)
as
f
:
return
pickle
.
load
(
f
)
if
six
.
PY2
else
pickle
.
load
(
f
,
encoding
=
'latin1'
)
param_path
=
path
+
".pdparams"
param_state
=
_load
(
param_path
)
assert
param_state
,
"failed to load parameters, please check path"
if
self
.
_executor
is
None
:
if
self
.
_executor
is
None
:
executor
=
fluid
.
Executor
(
fluid
.
CPUPlace
()).
_default_executor
executor
=
fluid
.
Executor
(
fluid
.
CPUPlace
()).
_default_executor
else
:
else
:
executor
=
self
.
_executor
.
_default_executor
executor
=
self
.
_executor
.
_default_executor
param_names
=
[
param
.
name
for
param
in
parameters
]
# restore parameter states
fluid
.
core
.
_create_loaded_parameter
(
fluid
.
core
.
_create_loaded_parameter
(
list
(
parameters
),
global_scope
(),
executor
)
[
param
for
param
,
state
in
param_state_pairs
],
global_scope
(),
executor
)
for
key
,
var
in
self
.
model
.
state_dict
().
items
():
for
param
,
state
in
param_state_pairs
:
if
not
param_names
or
var
.
name
in
param_names
:
self
.
_set_var
(
param
,
state
)
assert
key
in
param_state
,
\
"parameter [{}] is not found in model file [{}]"
.
format
(
key
,
param_path
)
self
.
_set_var
(
var
,
param_state
[
key
])
if
reset_optimizer
or
parameters
:
return
# restore optimizer states
# FIXME what if a different optimizer is used?
# FIXME what if a different optimizer is used?
if
not
self
.
model
.
_optimizer
:
if
not
self
.
model
.
_optimizer
or
not
optim_state
:
return
optim_path
=
path
+
".pdopt"
optim_state
=
_load
(
optim_path
)
if
optim_state
is
None
:
return
return
self
.
_load_optimizer
(
optim_state
,
executor
)
self
.
_load_optimizer
(
optim_state
,
executor
)
def
_load_optimizer
(
self
,
state
,
executor
):
def
_load_optimizer
(
self
,
state
,
executor
):
...
@@ -539,22 +517,13 @@ class DynamicGraphAdapter(object):
...
@@ -539,22 +517,13 @@ class DynamicGraphAdapter(object):
optim
=
self
.
model
.
_optimizer
.
state_dict
()
optim
=
self
.
model
.
_optimizer
.
state_dict
()
fluid
.
save_dygraph
(
optim
,
path
)
fluid
.
save_dygraph
(
optim
,
path
)
def
load
(
self
,
path
,
reset_optimizer
=
False
,
parameters
=
[]):
def
load
(
self
,
param_state_pairs
,
optim_state
):
param_state
,
optim_state
=
fluid
.
load_dygraph
(
path
)
# restore parameter states
for
param
,
state
in
param_state_pairs
:
param_names
=
[
param
.
name
for
param
in
parameters
]
param
.
set_value
(
state
)
for
key
,
var
in
self
.
model
.
state_dict
().
items
():
if
not
param_names
or
var
.
name
in
param_names
:
assert
key
in
param_state
,
\
"parameter [{}] is not found in model file [{}]"
.
format
(
key
,
path
+
".pdparams"
)
var
.
set_value
(
param_state
[
key
])
if
reset_optimizer
or
parameters
:
return
if
self
.
model
.
_optimizer
is
None
or
optim_state
is
None
:
# resotre optimizer states
if
not
self
.
model
.
_optimizer
or
not
optim_state
:
return
return
# If optimizer performs set_dict when state vars haven't been created,
# If optimizer performs set_dict when state vars haven't been created,
...
@@ -617,7 +586,6 @@ class Model(fluid.dygraph.Layer):
...
@@ -617,7 +586,6 @@ class Model(fluid.dygraph.Layer):
self
.
_optimizer
=
None
self
.
_optimizer
=
None
self
.
_device
=
None
self
.
_device
=
None
self
.
_device_ids
=
None
self
.
_device_ids
=
None
self
.
_optimizer
=
None
if
in_dygraph_mode
():
if
in_dygraph_mode
():
self
.
_adapter
=
DynamicGraphAdapter
(
self
)
self
.
_adapter
=
DynamicGraphAdapter
(
self
)
else
:
else
:
...
@@ -635,79 +603,71 @@ class Model(fluid.dygraph.Layer):
...
@@ -635,79 +603,71 @@ class Model(fluid.dygraph.Layer):
def
save
(
self
,
*
args
,
**
kwargs
):
def
save
(
self
,
*
args
,
**
kwargs
):
return
self
.
_adapter
.
save
(
*
args
,
**
kwargs
)
return
self
.
_adapter
.
save
(
*
args
,
**
kwargs
)
def
load
(
self
,
path
,
reset_optimizer
=
False
,
layers
=
None
,
weights
=
Non
e
):
def
load
(
self
,
path
,
skip_mismatch
=
False
,
reset_optimizer
=
Fals
e
):
"""
"""
Load from files storing the model states and optimizer states. The file
Load from files storing the model states and optimizer states. The file
for optimizer states is not necessary if no need to restore the optimizer.
for optimizer states is not necessary if no need to restore the optimizer.
`layers` and `weights` are useful for fine-tuning or transfer-learning
NOTE: parameters are retrieved out from the file storing model states
models where some of the layers have changed. If provided, only
accoring to their structured names.
parameters included in layers and weights would be loaded, and optimizer
would be reset. If both are None, make no effect and load all parameters.
For fine-tuning or transfer-learning models where some of the layers have
NOTE: parameters are restored based on names, which are decided by the
changed, keep parameters needed to restore have same structured names in
network's topology if not given by `param_attr` explicitly. This means
the pre-trained model and fine-tuning model.
the architecture should be the same as when the weights were saved.
Layers that don't have parameters are not taken into account in the
topological ordering, thus could be added or removed casually.
Args:
Args:
path (str): The prefix of files storing the model states and
path (str): The prefix of files storing the model states and
optimizer states. The files would be `path.pdparams` and
optimizer states. The files would be `path.pdparams` and
`path.pdopt` separately, and the latter is not necessary
`path.pdopt` separately, and the latter is not necessary
when no need to restore.
when no need to restore.
skip_mismatch (bool): Whether to skip the loading of mismatch
parameter or raise an error when mismatch happens (not found
the parameter in file storing model states of or receives a
mismatch shape).
reset_optimizer (bool): If True, ignore the providing file storing
reset_optimizer (bool): If True, ignore the providing file storing
optimizer states and initialize optimizer states from scratch.
optimizer states and initialize optimizer states from scratch.
Otherwise, restore optimizer states from `path.pdopt` if
Otherwise, restore optimizer states from `path.pdopt` if
a optimizer has been set to the model. Default False.
a optimizer has been set to the model. Default False.
layers (list|Layer|str|None): The layers to be restored. All
parameters in these layers would be loaded. `layers` is
composed of instances of Layer or string. A string corresponded
layer is the one whose `full_name()` equals to the string.
If None, make no effect to load. Default None.
weights (list|Parameter|str|None): The parameters to be loaded.
`weights` is composed of instances of Parameter or string.
A string corresponded parameter is the one whose name equals to
the string. If None, make no effect to load. Default None.
"""
"""
load_param_vars
=
set
()
if
layers
is
not
None
:
def
_load_state_from_path
(
path
):
model_layers
=
self
.
sublayers
()
if
not
os
.
path
.
exists
(
path
):
model_layers_dict
=
dict
((
layer
.
full_name
(),
layer
)
return
for
layer
in
model_layers
)
with
open
(
path
,
'rb'
)
as
f
:
for
i
,
layer
in
enumerate
(
to_list
(
layers
)):
return
pickle
.
load
(
f
)
if
six
.
PY2
else
pickle
.
load
(
if
isinstance
(
layer
,
fluid
.
dygraph
.
Layer
):
f
,
encoding
=
'latin1'
)
assert
layer
in
model_layers
,
(
"The #%d layer in layers is not in model."
%
i
)
def
_check_match
(
key
,
param
):
load_param_vars
.
update
(
layer
.
state_dict
().
values
())
state
=
param_state
.
get
(
key
,
None
)
elif
isinstance
(
layer
,
six
.
string_types
):
if
state
is
None
:
assert
layer
in
model_layers_dict
,
(
raise
ValueError
(
"The #%d layer in layers is not in model."
%
i
)
"{} is not found in the providing file."
.
format
(
key
))
load_param_vars
.
update
(
model_layers_dict
[
layer
].
state_dict
(
if
list
(
state
.
shape
)
!=
list
(
param
.
shape
):
).
values
())
raise
ValueError
(
else
:
"{} receives a shape {}, but the expected shape is {}."
.
raise
TypeError
(
format
(
key
,
list
(
state
.
shape
),
list
(
param
.
shape
)))
"The value in layers should be string or Layer."
)
return
param
,
state
if
weights
is
not
None
:
model_weights
=
self
.
parameters
()
param_state
=
_load_state_from_path
(
path
+
".pdparams"
)
model_weights_dict
=
dict
((
weight
.
name
,
weight
)
assert
param_state
,
"Failed to load parameters, please check path."
for
weight
in
model_weights
)
param_type
=
fluid
.
framework
.
ParamBase
if
in_dygraph_mode
(
matched_param_state
=
[]
)
else
fluid
.
framework
.
Parameter
for
key
,
param
in
self
.
state_dict
().
items
():
for
i
,
weight
in
enumerate
(
to_list
(
weights
)):
try
:
if
isinstance
(
weight
,
param_type
):
match_res
=
_check_match
(
key
,
param
)
# var== has been overwrited, thus do not use `weight in`
except
ValueError
as
err
:
assert
weight
.
name
in
model_weights_dict
,
(
if
skip_mismatch
:
"The #%d weight in weights is not in model."
%
i
)
warnings
.
warn
(
load_param_vars
.
add
(
weight
)
(
"Skip loading for {}. "
.
format
(
key
)
+
err
.
message
))
elif
isinstance
(
weight
,
six
.
string_types
):
# reset optimizer when mismatch happens
assert
weight
in
model_weights_dict
,
(
reset_optimizer
=
True
"The #%d weight in weights is not in model."
%
i
)
load_param_vars
.
add
(
model_weights_dict
[
weight
])
else
:
else
:
raise
TypeError
(
raise
err
"The value in weights should be string or %s."
%
matched_param_state
.
append
(
match_res
)
param_type
.
__name__
)
return
self
.
_adapter
.
load
(
path
,
reset_optimizer
,
list
(
load_param_vars
))
optim_state
=
None
if
reset_optimizer
else
_load_state_from_path
(
path
+
".pdopt"
)
return
self
.
_adapter
.
load
(
matched_param_state
,
optim_state
)
def
parameters
(
self
,
*
args
,
**
kwargs
):
def
parameters
(
self
,
*
args
,
**
kwargs
):
return
self
.
_adapter
.
parameters
(
*
args
,
**
kwargs
)
return
self
.
_adapter
.
parameters
(
*
args
,
**
kwargs
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录