提交 f4f461bd 编写于 作者: L LielinJiang

move tests folder

上级 4f78ebf3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# when test, you should add hapi root path to the PYTHONPATH,
# export PYTHONPATH=PATH_TO_HAPI:$PYTHONPATH
import unittest
import numpy as np
from hapi.datasets import *
class TestFolderDatasets(unittest.TestCase):
def test_dataset(self):
dataset_folder = DatasetFolder('tests/test_data')
for _ in dataset_folder:
pass
assert len(dataset_folder) == 3
assert len(dataset_folder.classes) == 2
class TestMNISTTest(unittest.TestCase):
def test_main(self):
mnist = MNIST(mode='test')
self.assertTrue(len(mnist) == 10000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 784)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
class TestMNISTTrain(unittest.TestCase):
def test_main(self):
mnist = MNIST(mode='train')
self.assertTrue(len(mnist) == 60000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 784)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
class TestFlowersTrain(unittest.TestCase):
def test_main(self):
flowers = Flowers(mode='train')
self.assertTrue(len(flowers) == 6149)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 6149)
image, label = flowers[idx]
self.assertTrue(len(image.shape) == 3)
self.assertTrue(image.shape[2] == 3)
self.assertTrue(label.shape[0] == 1)
class TestFlowersValid(unittest.TestCase):
def test_main(self):
flowers = Flowers(mode='valid')
self.assertTrue(len(flowers) == 1020)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 1020)
image, label = flowers[idx]
self.assertTrue(len(image.shape) == 3)
self.assertTrue(image.shape[2] == 3)
self.assertTrue(label.shape[0] == 1)
class TestFlowersTest(unittest.TestCase):
def test_main(self):
flowers = Flowers(mode='test')
self.assertTrue(len(flowers) == 1020)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 1020)
image, label = flowers[idx]
self.assertTrue(len(image.shape) == 3)
self.assertTrue(image.shape[2] == 3)
self.assertTrue(label.shape[0] == 1)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
# when test, you should add hapi root path to the PYTHONPATH,
# export PYTHONPATH=PATH_TO_HAPI:$PYTHONPATH
import unittest
import os
import numpy as np
import contextlib
import paddle
from paddle import fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
from paddle.io import BatchSampler, DataLoader
from hapi.model import Model, CrossEntropy, Input, Loss, set_device
from hapi.metrics import Accuracy
from hapi.callbacks import ProgBarLogger
from hapi.datasets import MNIST as MnistDataset
class SimpleImgConvPool(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=None,
act=None,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__('SimpleConv')
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=None,
bias_attr=None,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
class MNIST(Model):
def __init__(self):
super(MNIST, self).__init__()
self._simple_img_conv_pool_1 = SimpleImgConvPool(
1, 20, 5, 2, 2, act="relu")
self._simple_img_conv_pool_2 = SimpleImgConvPool(
20, 50, 5, 2, 2, act="relu")
pool_2_shape = 50 * 4 * 4
SIZE = 10
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
self._fc = Linear(
800,
10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)),
act="softmax")
def forward(self, inputs):
inputs = fluid.layers.reshape(inputs, [-1, 1, 28, 28])
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = fluid.layers.flatten(x, axis=1)
x = self._fc(x)
return x
class MLP(Model):
def __init__(self):
super(MLP, self).__init__()
SIZE = 10
self._fc1 = Linear(784, 200, act="relu")
self._fc2 = Linear(200, 200, act="relu")
self._fc3 = Linear(200, 200, act="relu")
self._fc4 = Linear(200, 10, act="softmax")
self._fc5 = Linear(200, 10, act="softmax")
def forward(self, inputs):
x1 = self._fc1(inputs)
x2 = self._fc2(x1)
x3 = self._fc3(x2)
o1 = self._fc5(x3)
o2 = self._fc4(x2)
return o1, o2
class MyCrossEntropy(Loss):
def __init__(self, average=True):
super(MyCrossEntropy, self).__init__()
def forward(self, outputs, labels):
loss1 = fluid.layers.cross_entropy(outputs[0], labels[0])
loss2 = fluid.layers.cross_entropy(outputs[1], labels[0])
return [loss1, loss2]
class TestMnistDataset(MnistDataset):
def __init__(self):
super(TestMnistDataset, self).__init__(mode='test')
def __getitem__(self, idx):
return self.images[idx],
def __len__(self):
return len(self.images)
def get_predict_accuracy(pred, gt):
pred = np.argmax(pred, -1)
gt = np.array(gt)
correct = pred[:, np.newaxis] == gt
return np.sum(correct) / correct.shape[0]
class TestModel(unittest.TestCase):
def fit(self, dynamic, is_mlp=False):
device = set_device('gpu')
fluid.enable_dygraph(device) if dynamic else None
im_shape = (-1, 784)
batch_size = 128
inputs = [Input(im_shape, 'float32', name='image')]
labels = [Input([None, 1], 'int64', name='label')]
train_dataset = MnistDataset(mode='train')
val_dataset = MnistDataset(mode='test')
test_dataset = TestMnistDataset()
model = MNIST() if not is_mlp else MLP()
optim = fluid.optimizer.Momentum(
learning_rate=0.01, momentum=.9, parameter_list=model.parameters())
loss = CrossEntropy() if not is_mlp else MyCrossEntropy()
model.prepare(optim, loss, Accuracy(), inputs, labels, device=device)
cbk = ProgBarLogger(50)
model.fit(train_dataset,
val_dataset,
epochs=2,
batch_size=batch_size,
callbacks=cbk)
eval_result = model.evaluate(val_dataset, batch_size=batch_size)
output = model.predict(
test_dataset, batch_size=batch_size, stack_outputs=True)
np.testing.assert_equal(output[0].shape[0], len(test_dataset))
acc = get_predict_accuracy(output[0], val_dataset.labels)
np.testing.assert_allclose(acc, eval_result['acc'])
def test_fit_static(self):
self.fit(False)
def test_fit_dygraph(self):
self.fit(True)
def test_fit_static_multi_loss(self):
self.fit(False, MyCrossEntropy())
def test_fit_dygraph_multi_loss(self):
self.fit(True, MyCrossEntropy())
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# when test, you should add hapi root path to the PYTHONPATH,
# export PYTHONPATH=PATH_TO_HAPI:$PYTHONPATH
import unittest
from hapi.datasets import DatasetFolder
import hapi.vision.transforms as transforms
class TestTransforms(unittest.TestCase):
def do_transform(self, trans):
dataset_folder = DatasetFolder('tests/test_data', transform=trans)
for _ in dataset_folder:
pass
def test_trans0(self):
normalize = transforms.Normalize(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375])
trans = transforms.Compose([
transforms.RandomResizedCrop(224), transforms.GaussianNoise(),
transforms.ColorJitter(
brightness=0.4, contrast=0.4, saturation=0.4,
hue=0.4), transforms.RandomHorizontalFlip(),
transforms.Permute(mode='CHW'), normalize
])
self.do_transform(trans)
def test_trans1(self):
trans = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
])
self.do_transform(trans)
def test_trans2(self):
trans = transforms.Compose([transforms.CenterCropResize(224)])
self.do_transform(trans)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册