Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
ec0eba2b
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ec0eba2b
编写于
4月 16, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine docs
上级
c3d166ab
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
77 addition
and
63 deletion
+77
-63
hapi/model.py
hapi/model.py
+27
-23
hapi/vision/models/mobilenetv1.py
hapi/vision/models/mobilenetv1.py
+4
-3
hapi/vision/models/mobilenetv2.py
hapi/vision/models/mobilenetv2.py
+4
-3
hapi/vision/models/resnet.py
hapi/vision/models/resnet.py
+23
-13
hapi/vision/models/vgg.py
hapi/vision/models/vgg.py
+8
-8
hapi/vision/transforms/transforms.py
hapi/vision/transforms/transforms.py
+11
-13
未找到文件。
hapi/model.py
浏览文件 @
ec0eba2b
...
...
@@ -798,7 +798,7 @@ class Model(fluid.dygraph.Layer):
"{} receives a shape {}, but the expected shape is {}."
.
format
(
key
,
list
(
state
.
shape
),
list
(
param
.
shape
)))
return
param
,
state
def
_strip_postfix
(
path
):
path
,
ext
=
os
.
path
.
splitext
(
path
)
assert
ext
in
[
''
,
'.pdparams'
,
'.pdopt'
,
'.pdmodel'
],
\
...
...
@@ -936,35 +936,35 @@ class Model(fluid.dygraph.Layer):
Args:
train_data (Dataset|DataLoader): An iterable data loader is used for
train. An instance of paddle paddle.io.Dataset or
paddle.io.Dataloader is recomended.
paddle.io.Dataloader is recomended.
Default: None.
eval_data (Dataset|DataLoader): An iterable data loader is used for
evaluation at the end of epoch. If None, will not do evaluation.
An instance of paddle.io.Dataset or paddle.io.Dataloader
is recomended.
is recomended.
Default: None.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored.
epochs (int): Integer number. The number of epochs to train the model.
parameter will be ignored.
Default: 1.
epochs (int): Integer number. The number of epochs to train the model.
Default: 1.
eval_freq (int): The frequency, in number of epochs, an evalutation
is performed.
is performed.
Default: 1.
log_freq (int): The frequency, in number of steps, the training logs
are printed.
are printed.
Default: 10.
save_dir(str|None): The directory to save checkpoint during training.
If None, will not save checkpoint.
save_freq (int): The frequency, in number of epochs, to save checkpoint.
If None, will not save checkpoint.
Default: None.
save_freq (int): The frequency, in number of epochs, to save checkpoint.
Default: 1.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
0 = silent, 1 = progress bar, 2 = one line per epoch.
Default: 2.
drop_last (bool): whether drop the last incomplete batch of train_data
when dataset size is not divisible by the batch size. When train_data
is an instance of Dataloader, this parameter will be ignored.
is an instance of Dataloader, this parameter will be ignored.
Default: False.
shuffle (bool): whther to shuffle train_data. When train_data is an instance
of Dataloader, this parameter will be ignored.
of Dataloader, this parameter will be ignored.
Default: True.
num_workers (int): the number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this parameter will be ignored.
both the instance of Dataloader, this parameter will be ignored.
Default: 0.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted.
are automatically inserted.
Default: None.
"""
assert
train_data
is
not
None
,
\
...
...
@@ -1066,18 +1066,20 @@ class Model(fluid.dygraph.Layer):
evaluation. An instance of paddle.io.Dataset or
paddle.io.Dataloader is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When
train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored
.
When
eval_data is the instance of Dataloader, this argument will be ignored.
Default: 1
.
log_freq (int): The frequency, in number of steps, the eval logs
are printed.
are printed.
Default: 10.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
0 = silent, 1 = progress bar, 2 = one line per epoch.
Default: 2.
num_workers (int): The number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this parameter will be ignored.
both the instance of Dataloader, this parameter will be ignored.
Default: 0.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted.
are automatically inserted. Default: None.
Returns:
dict: Result of metric.
"""
if
fluid
.
in_dygraph_mode
():
...
...
@@ -1142,16 +1144,18 @@ class Model(fluid.dygraph.Layer):
is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored
.
argument will be ignored. Default: 1
.
num_workers (int): the number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this
parameter will be ignored
.
both the instance of Dataloader, this
argument will be ignored. Default: 0
.
stack_output (bool): whether stack output field like a batch, as for an output
filed of a sample is in shape [X, Y], test_data contains N samples, predict
output field will be in shape [N, X, Y] if stack_output is True, and will
be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
is False. stack_outputs as False is used for LoDTensor output situation,
it is recommended set as True if outputs contains no LoDTensor. Default False
it is recommended set as True if outputs contains no LoDTensor. Default: False.
Returns:
list: output of models.
"""
if
fluid
.
in_dygraph_mode
():
...
...
hapi/vision/models/mobilenetv1.py
浏览文件 @
ec0eba2b
...
...
@@ -263,7 +263,7 @@ class MobileNetV1(Model):
def
_mobilenet
(
arch
,
pretrained
=
False
,
**
kwargs
):
model
=
MobileNetV1
(
num_classes
=
1000
,
with_pool
=
True
,
**
kwargs
)
model
=
MobileNetV1
(
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
...
...
@@ -276,12 +276,13 @@ def _mobilenet(arch, pretrained=False, **kwargs):
return
model
def
mobilenet_v1
(
pretrained
=
False
,
scale
=
1.0
):
def
mobilenet_v1
(
pretrained
=
False
,
scale
=
1.0
,
**
kwargs
):
"""MobileNetV1
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
scale: (float): scale of channels in each layer. Default: 1.0.
"""
model
=
_mobilenet
(
'mobilenetv1_'
+
str
(
scale
),
pretrained
,
scale
=
scale
)
model
=
_mobilenet
(
'mobilenetv1_'
+
str
(
scale
),
pretrained
,
scale
=
scale
,
**
kwargs
)
return
model
hapi/vision/models/mobilenetv2.py
浏览文件 @
ec0eba2b
...
...
@@ -237,7 +237,7 @@ class MobileNetV2(Model):
def
_mobilenet
(
arch
,
pretrained
=
False
,
**
kwargs
):
model
=
MobileNetV2
(
num_classes
=
1000
,
with_pool
=
True
,
**
kwargs
)
model
=
MobileNetV2
(
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
...
...
@@ -250,12 +250,13 @@ def _mobilenet(arch, pretrained=False, **kwargs):
return
model
def
mobilenet_v2
(
pretrained
=
False
,
scale
=
1.0
):
def
mobilenet_v2
(
pretrained
=
False
,
scale
=
1.0
,
**
kwargs
):
"""MobileNetV2
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
scale: (float): scale of channels in each layer. Default: 1.0.
"""
model
=
_mobilenet
(
'mobilenetv2_'
+
str
(
scale
),
pretrained
,
scale
=
scale
)
model
=
_mobilenet
(
'mobilenetv2_'
+
str
(
scale
),
pretrained
,
scale
=
scale
,
**
kwargs
)
return
model
hapi/vision/models/resnet.py
浏览文件 @
ec0eba2b
...
...
@@ -30,8 +30,18 @@ __all__ = [
]
model_urls
=
{
'resnet18'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams'
,
'0ba53eea9bc970962d0ef96f7b94057e'
),
'resnet34'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams'
,
'46bc9f7c3dd2e55b7866285bee91eff3'
),
'resnet50'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams'
,
'0884c9087266496c41c60d14a96f8530'
)
'0884c9087266496c41c60d14a96f8530'
),
'resnet101'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams'
,
'fb07a451df331e4b0bb861ed97c3a9b9'
),
'resnet152'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams'
,
'f9c700f26d3644bb76ad2226ed5f5713'
),
}
...
...
@@ -252,8 +262,8 @@ class ResNet(Model):
return
x
def
_resnet
(
arch
,
Block
,
depth
,
pretrained
):
model
=
ResNet
(
Block
,
depth
,
num_classes
=
1000
,
with_pool
=
True
)
def
_resnet
(
arch
,
Block
,
depth
,
pretrained
,
**
kwargs
):
model
=
ResNet
(
Block
,
depth
,
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
...
...
@@ -265,46 +275,46 @@ def _resnet(arch, Block, depth, pretrained):
return
model
def
resnet18
(
pretrained
=
False
):
def
resnet18
(
pretrained
=
False
,
**
kwargs
):
"""ResNet 18-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return
_resnet
(
'resnet18'
,
BasicBlock
,
18
,
pretrained
)
return
_resnet
(
'resnet18'
,
BasicBlock
,
18
,
pretrained
,
**
kwargs
)
def
resnet34
(
pretrained
=
False
):
def
resnet34
(
pretrained
=
False
,
**
kwargs
):
"""ResNet 34-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return
_resnet
(
'resnet34'
,
BasicBlock
,
34
,
pretrained
)
return
_resnet
(
'resnet34'
,
BasicBlock
,
34
,
pretrained
,
**
kwargs
)
def
resnet50
(
pretrained
=
False
):
def
resnet50
(
pretrained
=
False
,
**
kwargs
):
"""ResNet 50-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return
_resnet
(
'resnet50'
,
BottleneckBlock
,
50
,
pretrained
)
return
_resnet
(
'resnet50'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
def
resnet101
(
pretrained
=
False
):
def
resnet101
(
pretrained
=
False
,
**
kwargs
):
"""ResNet 101-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return
_resnet
(
'resnet101'
,
BottleneckBlock
,
101
,
pretrained
)
return
_resnet
(
'resnet101'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
def
resnet152
(
pretrained
=
False
):
def
resnet152
(
pretrained
=
False
,
**
kwargs
):
"""ResNet 152-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return
_resnet
(
'resnet152'
,
BottleneckBlock
,
152
,
pretrained
)
return
_resnet
(
'resnet152'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
hapi/vision/models/vgg.py
浏览文件 @
ec0eba2b
...
...
@@ -137,7 +137,7 @@ def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
return
model
def
vgg11
(
pretrained
=
False
,
batch_norm
=
False
):
def
vgg11
(
pretrained
=
False
,
batch_norm
=
False
,
**
kwargs
):
"""VGG 11-layer model
Args:
...
...
@@ -147,10 +147,10 @@ def vgg11(pretrained=False, batch_norm=False):
model_name
=
'vgg11'
if
batch_norm
:
model_name
+=
(
'_bn'
)
return
_vgg
(
model_name
,
'A'
,
batch_norm
,
pretrained
)
return
_vgg
(
model_name
,
'A'
,
batch_norm
,
pretrained
,
**
kwargs
)
def
vgg13
(
pretrained
=
False
,
batch_norm
=
False
):
def
vgg13
(
pretrained
=
False
,
batch_norm
=
False
,
**
kwargs
):
"""VGG 13-layer model
Args:
...
...
@@ -160,10 +160,10 @@ def vgg13(pretrained=False, batch_norm=False):
model_name
=
'vgg13'
if
batch_norm
:
model_name
+=
(
'_bn'
)
return
_vgg
(
model_name
,
'B'
,
batch_norm
,
pretrained
)
return
_vgg
(
model_name
,
'B'
,
batch_norm
,
pretrained
,
**
kwargs
)
def
vgg16
(
pretrained
=
False
,
batch_norm
=
False
):
def
vgg16
(
pretrained
=
False
,
batch_norm
=
False
,
**
kwargs
):
"""VGG 16-layer model
Args:
...
...
@@ -173,10 +173,10 @@ def vgg16(pretrained=False, batch_norm=False):
model_name
=
'vgg16'
if
batch_norm
:
model_name
+=
(
'_bn'
)
return
_vgg
(
model_name
,
'D'
,
batch_norm
,
pretrained
)
return
_vgg
(
model_name
,
'D'
,
batch_norm
,
pretrained
,
**
kwargs
)
def
vgg19
(
pretrained
=
False
,
batch_norm
=
False
):
def
vgg19
(
pretrained
=
False
,
batch_norm
=
False
,
**
kwargs
):
"""VGG 19-layer model
Args:
...
...
@@ -186,4 +186,4 @@ def vgg19(pretrained=False, batch_norm=False):
model_name
=
'vgg19'
if
batch_norm
:
model_name
+=
(
'_bn'
)
return
_vgg
(
model_name
,
'E'
,
batch_norm
,
pretrained
)
return
_vgg
(
model_name
,
'E'
,
batch_norm
,
pretrained
,
**
kwargs
)
hapi/vision/transforms/transforms.py
浏览文件 @
ec0eba2b
...
...
@@ -71,7 +71,7 @@ class Compose(object):
except
Exception
as
e
:
stack_info
=
traceback
.
format_exc
()
print
(
"fail to perform transform [{}] with error: "
"{} and stack:
\n
{}"
.
format
(
f
,
e
,
str
(
stack_info
)))
"{} and stack:
\n
{}"
.
format
(
f
,
e
,
str
(
stack_info
)))
raise
e
return
data
...
...
@@ -92,6 +92,7 @@ class BatchCompose(object):
these transforms perform on batch data.
"""
def
__init__
(
self
,
transforms
=
[]):
self
.
transforms
=
transforms
...
...
@@ -102,7 +103,7 @@ class BatchCompose(object):
except
Exception
as
e
:
stack_info
=
traceback
.
format_exc
()
print
(
"fail to perform batch transform [{}] with error: "
"{} and stack:
\n
{}"
.
format
(
f
,
e
,
str
(
stack_info
)))
"{} and stack:
\n
{}"
.
format
(
f
,
e
,
str
(
stack_info
)))
raise
e
# sample list to batch data
...
...
@@ -112,7 +113,7 @@ class BatchCompose(object):
class
Resize
(
object
):
"""Resize the input
PIL
Image to the given size.
"""Resize the input Image to the given size.
Args:
size (int|list|tuple): Desired output size. If size is a sequence like
...
...
@@ -130,13 +131,6 @@ class Resize(object):
self
.
interpolation
=
interpolation
def
__call__
(
self
,
img
,
lbl
):
"""
Args:
img (PIL Image): Image to be scaled.
Returns:
PIL Image: Rescaled image.
"""
return
F
.
resize
(
img
,
self
.
size
,
self
.
interpolation
),
lbl
...
...
@@ -328,18 +322,22 @@ class Permute(object):
Input image should be HWC mode and an instance of numpy.ndarray.
Args:
mode: Output mode of input. Use "CHW" mode by default.
mode: Output mode of input. Default: "CHW".
to_rgb: convert 'bgr' image to 'rgb'. Default: True.
"""
def
__init__
(
self
,
mode
=
"CHW"
):
def
__init__
(
self
,
mode
=
"CHW"
,
to_rgb
=
True
):
assert
mode
in
[
"CHW"
],
"Only support 'CHW' mode, but received mode: {}"
.
format
(
mode
)
self
.
mode
=
mode
self
.
to_rgb
=
to_rgb
def
__call__
(
self
,
img
,
lbl
):
if
self
.
to_rgb
:
img
=
img
[...,
::
-
1
]
if
self
.
mode
==
"CHW"
:
return
img
.
transpose
((
2
,
0
,
1
))
[::
-
1
,
...]
,
lbl
return
img
.
transpose
((
2
,
0
,
1
)),
lbl
return
img
,
lbl
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录